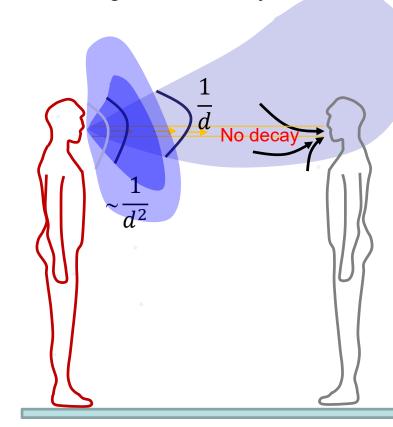


Case study #2 - Preventing outbreaks on ground transportation

Yuguo Li 李玉国
Department of Mechanical Engineering
/ Faculty of Architecture
The University of Hong Kong, Hong Kong, China



Close and distant range of the expired aerosols

Close range <1.5 m: 0.5-2 m/s; 1 s;

 $<75 \mu m$;

high concentration; greater viability

effective dilution air

effective clean air effective non-infectious air

deactivation filtration

$$q_E = q_v + q_s + q_d + \eta_f q_f$$
Outdoor air settling

Distant range : <0.25 m/s;

hours, $<5-10 \mu m$;

low concentration; low

viability

Airborne route → aerosol inhalation

Large droplets → drop **spray**

Fomite route → surface touch

The probable required effective dilution flow rate is 10 L/s per person for ancestral virus and 40 L/s per person for Omicron

$$N_{\iota} \approx Q \frac{\overline{q}_{in}}{q_{e}} \overline{\Delta t},$$
 Effective dilution rate

Ancestral virus

If
$$Q = 100 \text{ h}^{-1}$$
, $\Delta t = 1 \text{h}$,

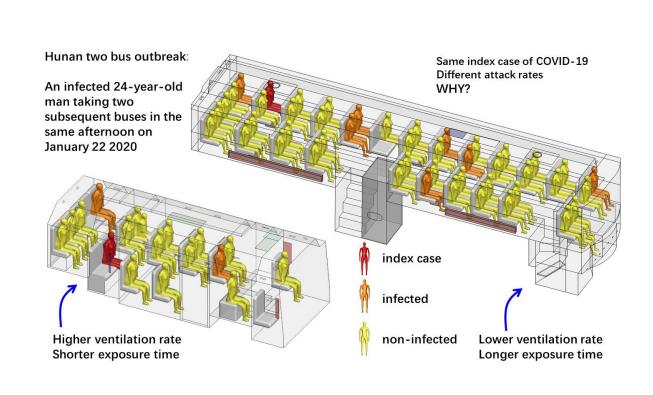
$$q_e$$
=10 L/s

Omicron

If
$$Q = 400 \text{ h}^{-1}$$
, $\Delta t = 1 \text{h}$,

$$a_{o} = 40 \text{ L/s}$$

$$q_E = q_v + q_s + q_d + \eta_f q_f$$


- Mass masking would reduce the ventilation requirement to
- 2.5 L/sp for ancestral virus
- 10 L/sp for Omicron
- Ventilation cannot control close-range within 0.4 m, and social distancing would work

Jia, W., et al., 2022. Building and Environment, p.109674.

Hunan bus outbreak:

The effective dilution rate was only 2.1 L/s per person on B1 and 3.7 L/s per person on B2

Due to crowdedness,	the contribution from	settling and natural
decay is small. Howe	ver, if air conditioning	is on, filtration helps.

I L	10 13	id ij ij	
	B1	B2	
persons	46	17	
secondary cases	7	2	
attack rate (%)	15.2	11.8	
q_v outdoor air	1.7	3.22	
Exposure time	200	60	
(min)			
q_f filtration	0	0	
q_s settling	0.11	0.11	
q_d deactivation	0.23	0.22	
q_e effective dilution	2.1	3.7	

Ou, et al., 2022. Insufficient ventilation led to a probable long-range airborne transmission of SARS-CoV-2 on two buses. *Building and environment*, 207, p.108414.

It appears that inflight outbreaks (before Omicron) are not as many considering a crowded space

- Lei et al (submitted) found only 16 inflight outbreaks (Jan 8, 2020 to Jun 9, 2021) with data. Duration 85 min 18 hrs.
- A total of 41 index cases infected 88 of the 1,326 passengers, with an overall attack rate of 6.6%.
- Historically only 15 influenza outbreaks, and 4 SARS outbreaks reported.
- Effective dilution rate $q_e \approx 10 \frac{L}{s.p}$

$$q_E = q_v + q_s + q_d + \eta_f q_f$$

Air flow per person L/s.p	Narrow- body	Wide- body
q_v outdoor air	4.2	5.7
q_f filtration	5.2	6.1
q_s settling	0.08	0.13
q_d deactivation	0.18	0.28
q_e effective dilution	9.7	12.2

Walkinshaw, D.S., 2011. Germs and flying: developing ventilation system criteria. *SAE International Journal of Aerospace*, 4(2),25

Existing ventilation standards for ground transportation

- 2.8 L/s.p on bus (CJ/T 134-2001 GB7248-2012)
- 2.8-8.3 L/s.p in subway station: (GBT 51357-2019).
- 2.7-4.2 L/s.p railway (BS EN 14750-1:2006)
- CO₂ 2500 ppm (level 1) and 3500 ppm (level 2) on bus, railways and ferries (Hong Kong ProPECC PN 1/03, 2/03, 1/15)

Harvard University shuttle bus in 2008. CO₂ went up to 2862 ppm

S. Zhu et al. / Building and Environment 45 (2010) 2077-2088

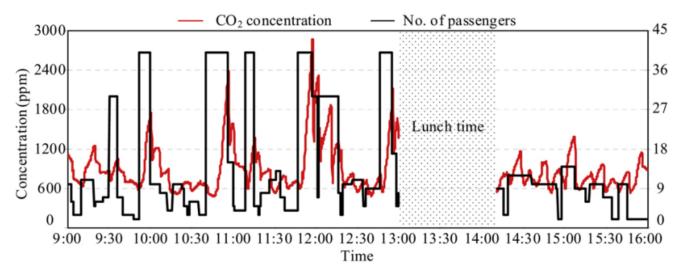


Fig. 11. CO₂ concentration level and occupancy condition in the bus as a function of time (Nov. 19th).

Zhu, S., Demokritou, P. and Spengler, J., 2010. *Building and Environment*, 45(10), pp.2077-2088.

Recommended measures

 For long-range inhalation, provide 10 L/s per person dilution (outdoor air, filtration and GUV) and wear masks

 Optimize boarding/alighting dynamics to minimize close-range contacts

Thank you