

Starlink, Radio Astronomy, Satellites and all that

Harvey Liszt, NRAO
Chair, IUCAF

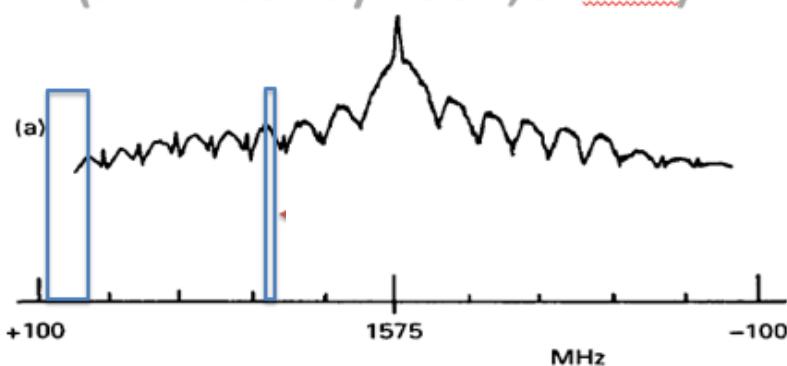
Radio spectrum use is heavily regulated, optical not so much

- Called spectrum management, the base level of spectrum access
 - Radio spectrum defined as $\lambda \geq 100\mu$, $\nu \leq 3\ 000$ GHz
 - Radio scientists have a >60-year history of training for this

5th International IUCAF Spectrum Management School for Radio Astronomy
Stellenbosch, South Africa 2 – 6 March 2020

SCIENTIFIC COMMITTEE
ON
FREQUENCY ALLOCATIONS
FOR
RADIO ASTRONOMY
AND
SPACE SCIENCE

IUCAF

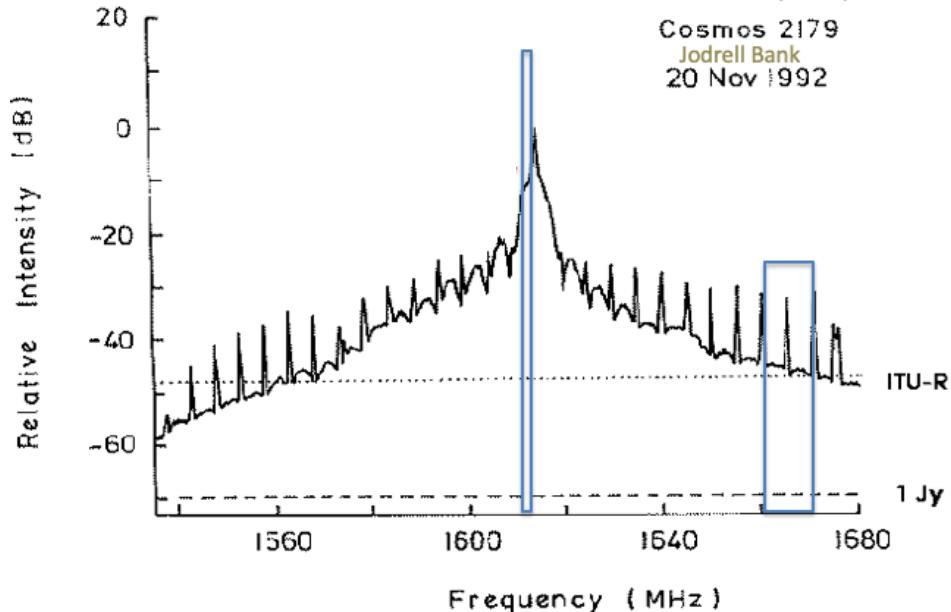

Radio spectrum use is heavily regulated, optical not so much

- Ironically, use of optical spectrum is being impaired by indifferent radio spectrum operators and regulators
- Regulated or not, the endpoint is the same: Scientific access to OIR* spectrum is eroding across wavebands and disciplines

***OIR=Optical, Infrared, Radio**

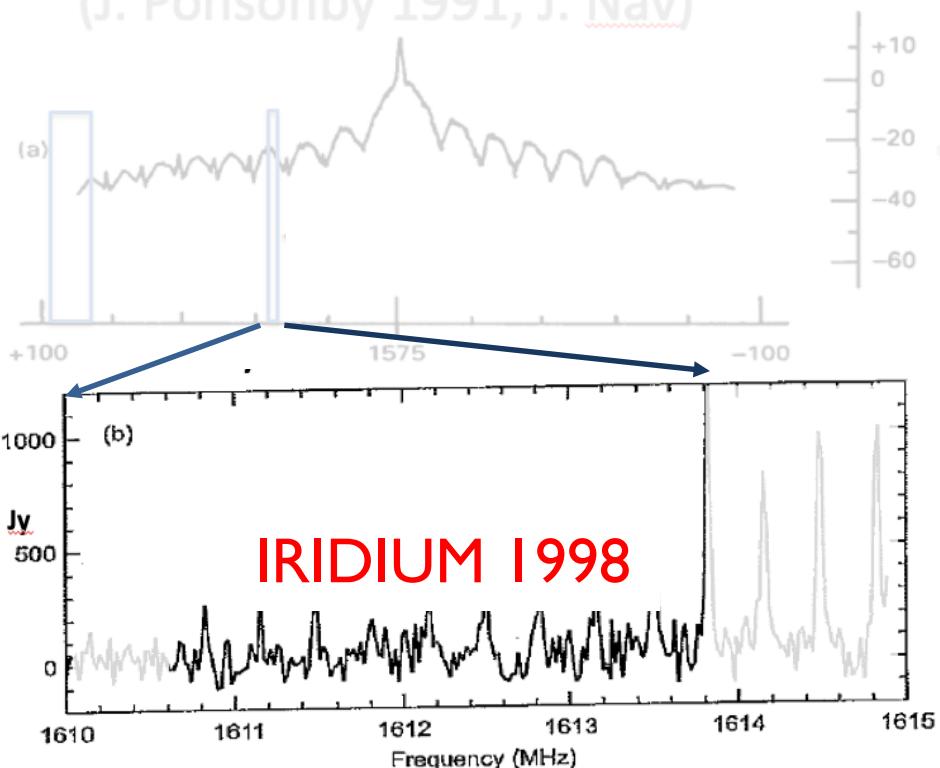
GPS Block I 1978 -1992

(J. Ponsonby 1991, J. Nav)



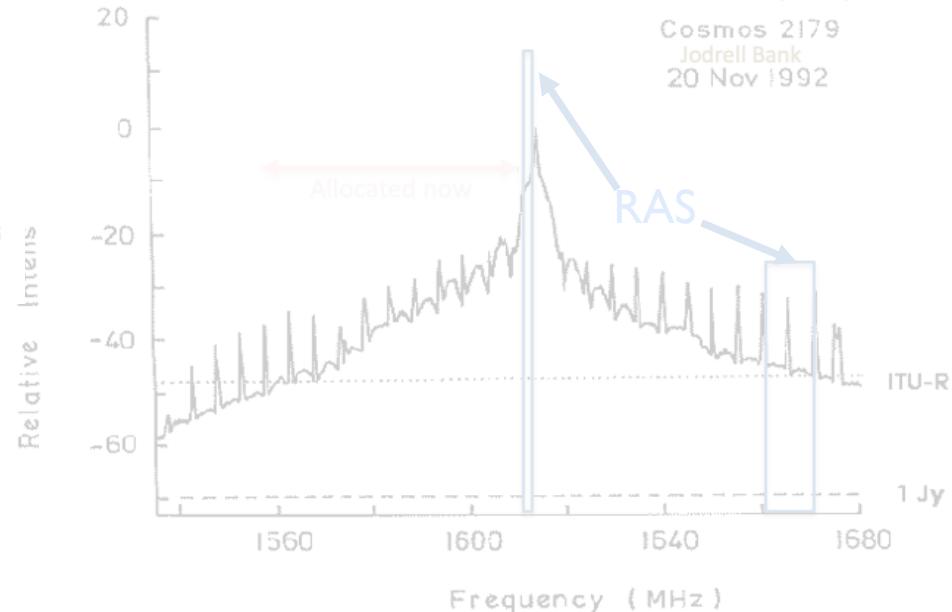
Radio astronomers have been dealing with satellite interference since the first GPS launch in 1978 and GLONASS in 1984

Early RNSS used unfiltered BPSK digital modulation and broadcast unnecessarily over hundreds of MHZ
Radio astronomy allocations are shown as blue rectangles


1984 RNSS-GLONASS 2007

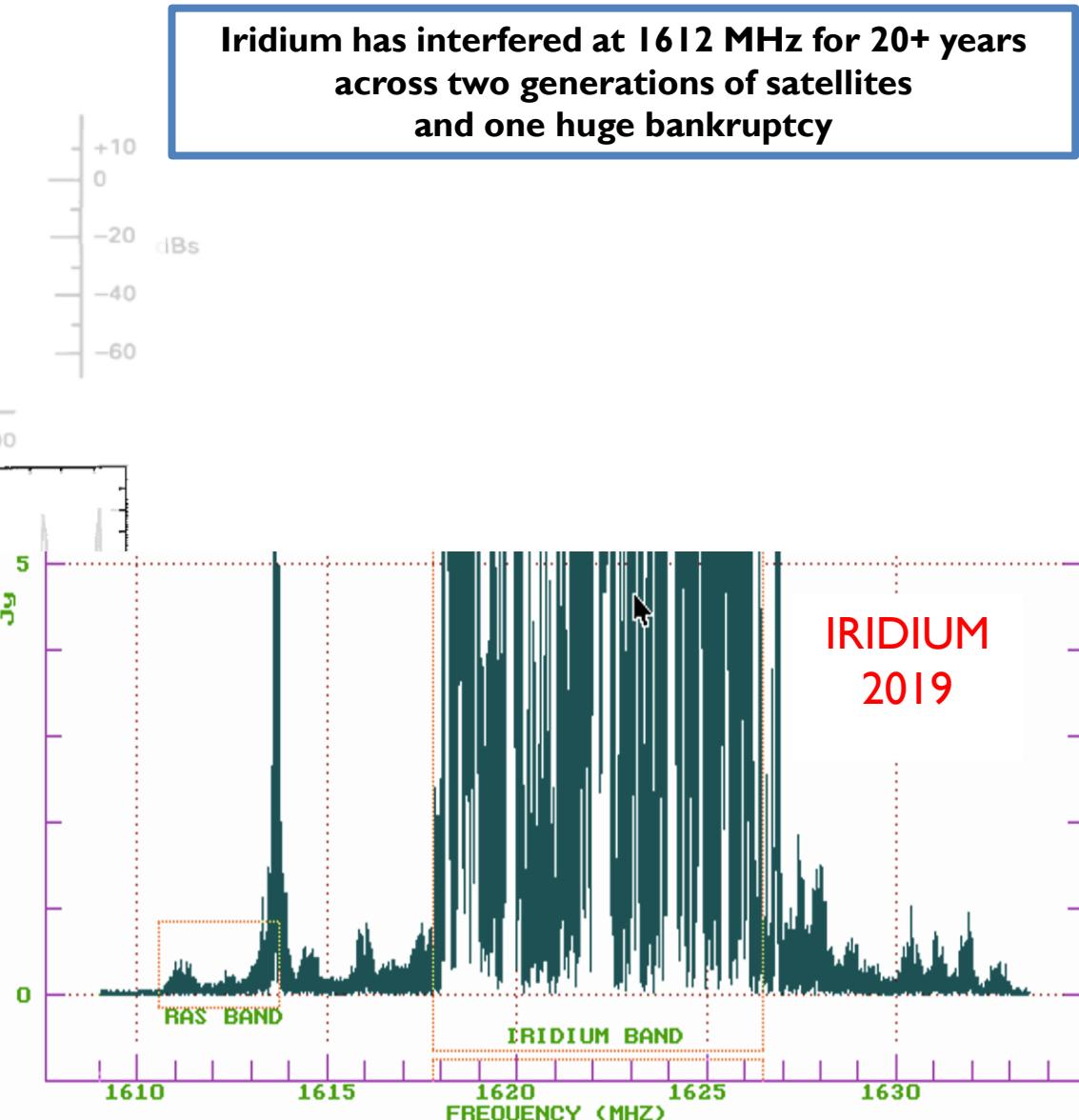
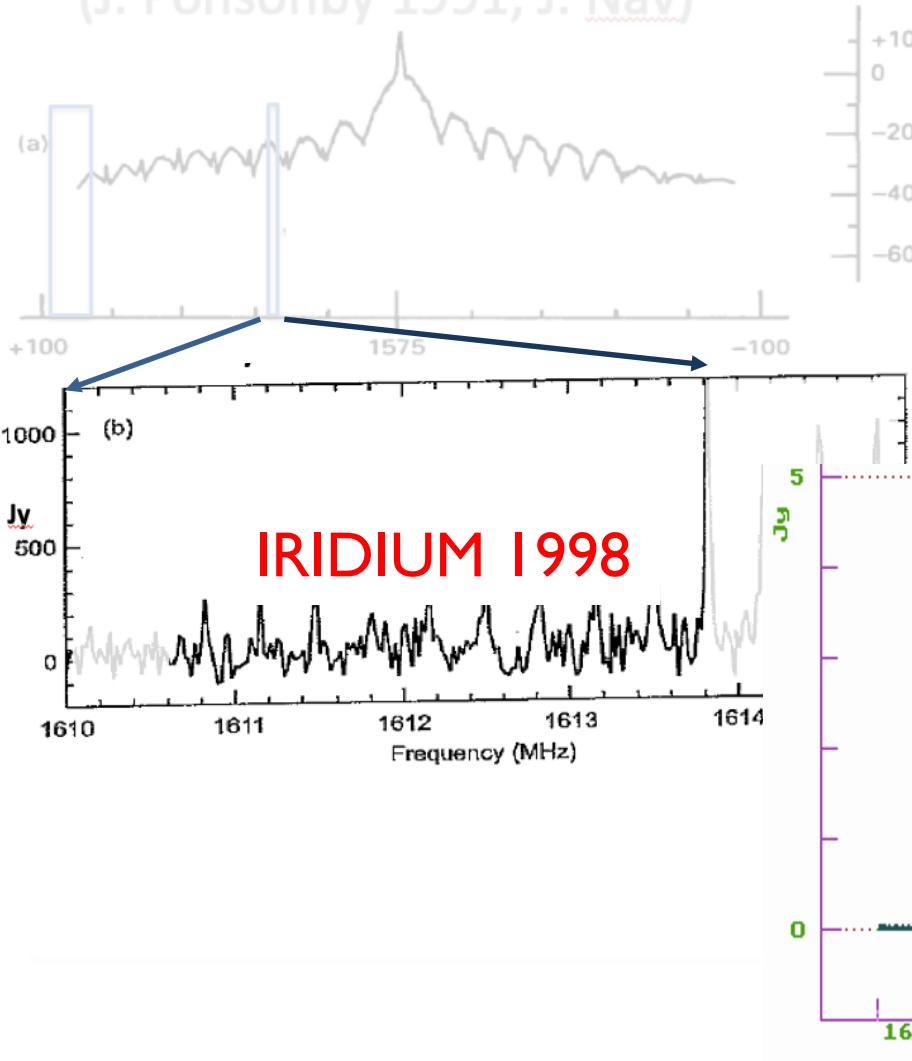
- Unlike GPS, each GLONASS satellite uses a different frequency channel

GPS Block I 1978 -1992


(J. Ponsonby 1991, J. Nav)

Iridium has interfered at 1612 MHz for 20+ years
across two generations of satellites
and one huge bankruptcy

1984 RNSS-GLONASS 2007



- Unlike GPS, each GLONASS satellite uses a different frequency channel

GPS Block I 1978 -1992

(J. Ponsonby 1991, J. Nav)

Iridium has interfered at 1612 MHz for 20+ years
across two generations of satellites
and one huge bankruptcy

Why are we here?

- Starlink and other new systems are prodigious spectrum users

ECC Report 271

Table 19: Frequency Bands Used by the SpaceX System

Type of Link and Transmission Direction	Frequency Ranges	RAS band affected
User Downlink Satellite-to-User Terminal	10.7–12.7 GHz	10.6–10.7 GHz (10.68–10.7 passive)
Gateway Downlink Satellite to Gateway	17.8–18.6 GHz 18.8–19.3 GHz	
User Uplink User Terminal to Satellite	14.0–14.5 GHz	14.47–14.5 GHz
Gateway Uplink Gateway to Satellite	27.5–29.1 GHz 29.5–30.0 GHz	
TT&C Downlink	12.15–12.25 GHz 18.55–18.60 GHz	
TT&C Uplink	13.85–14.00 GHz	

SpaceX, OneWeb

Why are we here?

- Starlink and other new systems are prodigious spectrum users

ECC Report 271

Table 19: Frequency Bands Used by the SpaceX System

Type of Link and Transmission Direction	Frequency Ranges	RAS band affected
User Downlink Satellite-to-User Terminal	10.7–12.7 GHz	10.6–10.7 GHz (10.68–10.7 passive)
Gateway Downlink Satellite to Gateway	17.8–18.6 GHz 18.8–19.3 GHz	
User Uplink User Terminal to Satellite	14.0–14.5 GHz	14.47–14.5 GHz
Gateway Uplink Gateway to Satellite	27.5–29.1 GHz 29.5–30.0 GHz	
TT&C Downlink	12.15–12.25 GHz 18.55–18.60 GHz	
TT&C Uplink	13.85–14.00 GHz	

Use of the 10.7 - 12.7 GHz downlink band is subject to coordination

SpaceX and OneWeb had to agree to forgo use of the lowest 1/8th (250 MHz) of the downlink band

SpaceX, OneWeb

-

spectrum users

SoftBank-Backed OneWeb Files for Chapter 11 Bankruptcy Plan, Cuts Jobs

By Reuters

March 27, 2020

Hi Harvey,

Still OK here in Brittany where the situation is not yet so terrible compare to Paris or the East of France. But it could change.

1.5 GHz

For ONEWEB I just got the confirmation from them. 90% of employees are fired and the rest will be in a few months.

Regards,

TT&C Uplink

13.85–14.00 GHz

SpaceX, OneWeb

Use of the 10.7 - 12.7 GHz downlink band is subject to coordination

SpaceX and OneWeb had to agree to forgo use of the lowest 1/8th (250 MHz) of the downlink band

Why are we here?

- High altitude platform systems at 20 km are equally prodigious

ECC Report 271

Table 19: Frequency Bands Used by the SpaceX System

Type of Link and Transmission Direction	Frequency Ranges	RAS band affected
User Downlink Satellite-to-User Terminal	10.7–12.7 GHz	10.6–10.7 GHz (10.68–10.7 passive)
Gateway Downlink Satellite to Gateway	17.8–18.6 GHz 18.8–19.3 GHz	
User Uplink User Terminal to Satellite	14.0–14.5 GHz	14.47–14.5 GHz
Gateway Uplink Gateway to Satellite	27.5–29.1 GHz 29.5–30.0 GHz	
TT&C Downlink	12.15–12.25 GHz 18.55–18.60 GHz	
TT&C Uplink	13.85–14.00 GHz	

SpaceX, OneWeb

FIGURE 4
Example CPE beam gateway beam and HAPS coverage

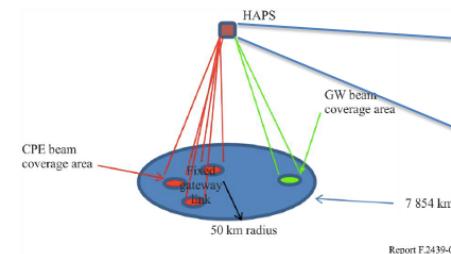
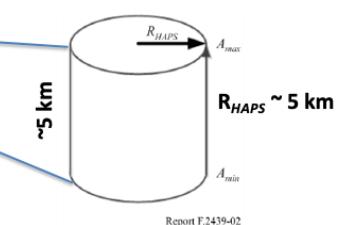



FIGURE 2
HAPS volume of movement

HAPS

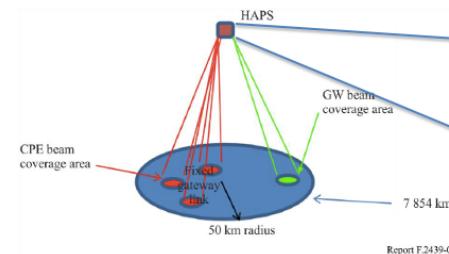
Report ITU-R F.2439-0
(11/2018)

Deployment and technical characteristics of broadband high altitude platform stations in the fixed service in the frequency bands 6 440-6 520 MHz, 21.4-22.0 GHz, 24.25-27.5 GHz, 27.9-28.2 GHz, 31.0-31.3 GHz, 38.0-39.5 GHz, 47.2-47.5 GHz and 47.9-48.2 GHz used in sharing and compatibility studies

Why are we here?

- High altitude platform systems at 20 km are equally prodigious

ECC Report 271


Table 19: Frequency Bands Used by the SpaceX System

Type of Link and Transmission Direction	Frequency Ranges	RAS band affected
User Downlink Satellite-to-User Terminal	10.7–12.7 GHz	10.6–10.7 GHz (10.68–10.7 passive)
Gateway Downlink Satellite to Gateway	17.8–18.6 GHz 18.8–19.3 GHz	
User Uplink User Terminal to Satellite	14.0–14.5 GHz	14.47–14.5 GHz
Gateway Uplink Gateway to Satellite	27.5–29.1 GHz 29.5–30.0 GHz	
TT&C Downlink	12.15–12.25 GHz 18.55–18.60 GHz	
TT&C Uplink	13.85–14.00 GHz	

SpaceX, OneWeb

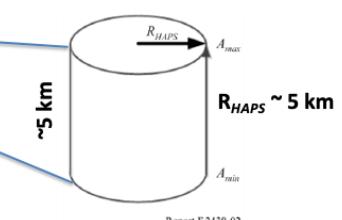

HAPS proponents also agreed to make substantial sacrifices but their presence would greatly complicate operations for radio telescopes within los, ~ 500 km

FIGURE 4
Example CPE beam gateway beam and HAPS coverage

Report F.2439-04

FIGURE 2
HAPS volume of movement

HAPS

Report ITU-R F.2439-0
(11/2018)

Deployment and technical characteristics of broadband high altitude platform stations in the fixed service in the frequency bands
6 440–6 520 MHz, 21.4–22.0 GHz,
24.25–27.5 GHz, 27.9–28.2 GHz,
31.0–31.3 GHz, 38.0–39.5 GHz,
47.2–47.5 GHz and 47.9–48.2 GHz used in sharing and compatibility studies

Why are we here?

- To say nothing of 5G

ECC Report 271

Table 19: Frequency Bands Used by the SpaceX System

Type of Link and Transmission Direction	Frequency Ranges	RAS band affected
User Downlink Satellite-to-User Terminal	10.7–12.7 GHz	10.6–10.7 GHz (10.68–10.7 passive)
Gateway Downlink Satellite to Gateway	17.8–18.6 GHz 18.8–19.3 GHz	
User Uplink User Terminal to Satellite	14.0–14.5 GHz	14.47–14.5 GHz
Gateway Uplink Gateway to Satellite	27.5–29.1 GHz 29.5–30.0 GHz	
TT&C Downlink	12.15–12.25 GHz 18.55–18.60 GHz	
TT&C Uplink	13.85–14.00 GHz	

WRC-23:

- 1.2 to consider identification of the frequency bands
 - **3 600-3 800 MHz and 3 300-3 400 MHz** (Region 2);
 - **3 300-3 400 MHz** (amend footnote in Region 1);
 - **7 025-7 125 MHz** (globally);
 - **6 425-7 025 MHz** (Region 1);
 - **10 000-10 500 MHz** (Region 2),

- **5G at WRC-15**

- **450-470, 1427-1452, 1492-1518, 1710-1885, 1885-2025, 2110-2200, 300-2400, 2500-2690, 3400-3600 MHz**

Report ITU-R F.2439-0
(11/2018)

Deployment and technical characteristics of broadband high altitude platform stations in the fixed service in the frequency bands **6 440-6 520 MHz, 21.4-22.0 GHz, 24.25-27.5 GHz, 27.9-28.2 GHz, 31.0-31.3 GHz, 38.0-39.5 GHz, 47.2-47.5 GHz and 47.9-48.2 GHz** used in sharing and compatibility studies

Why are we here?

- Access to spectrum is eroding for all of science

Why are we here?

- Access to spectrum is eroding for all of science
 - **Only a tiny fraction of the spectrum is dedicated to science**
 - 1-2% below 86 GHz, nothing for RAS at 32 - 86 GHz
 - **More unwanted emissions into dedicated bands**
 - Lax standards; especially for 5G that is an issue in Congress
 - **Less unoccupied spectrum**
 - Will have to look harder and faster for clean spectrum
 - Systems making concessions block huge swaths of spectrum
 - **Weakening of spectrum protections in dedicated bands**
 - FCC now allowing transmissions in internationally-protected bands dedicated to science, especially above 95 GHz
 - **Spectrum allocations formerly terrestrial will be used aloft**
 - **HIBS - 5G base stations on HAPS (WRC-23 AI 1.4)**
 - **Earth stations in motion aboard aircraft, UAV**

Why are we here?

- So what can we do; what are we doing to avoid problems?
 - **Radio quiet zones, remoteness to mitigate RFI a priori**
 - More than a dozen QZ worldwide, see [ITU-R Report RA.2259](#)
 - Local coordination zones for specific applications like 5G
 - **Faster, higher dynamic-range receiving signal chains**
 - oVLA could not observe 1612 MHz after 1998 in the presence of Iridium (unrelated to RFI), the JVLA can
 - **Increased coordination with “active” services**
 - Agreements with satellite operators to avoid RAS sites
 - For SAR and cloud radars that have lethal signal levels
 - **Engagement with spectrum management**
 - The *sine qua non* of access to spectrum
 - Where dangers to RAS operations are first recognized

“RFI is what happens when spectrum management fails”

“RFI is what happens when spectrum management fails”

- Radio scientists also deal directly with received RFI
 - Regular RFI meetings have broadened beyond RAS to incorporate remote sensing, happen more frequently

The image shows a banner for RFI 2016. On the left is a blue rectangular logo with "RFI 2016" in white. The main banner text is "Coexisting with Radio Frequency Interference" in green. Below that is a graphic of a satellite in space. At the bottom is a large image of the Very Large Array (VLA) radio telescope. The text "Hosted by the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, USA October 17-20, 2016" is in the center. Logos for NRAO, CSIRO, IEEE GRSS, ASTRON, EURASIP, and URSI are at the bottom. A small box on the right says "SCIENTIFIC COMMITTEE" and "PRELIMINARY ALLOCATION".

RFI 2019

Coexisting with Radio Frequency Interference

Toulouse, France

September 23-26, 2019

RFI 2016

Coexisting with Radio Frequency Interference

Hosted by the
National Radio Astronomy Observatory (NRAO)
in Socorro, New Mexico, USA
October 17-20, 2016

NRAO

CSIRO

IEEE GRSS

ASTRON

EURASIP

URSI

SCIENTIFIC COMMITTEE

PRELIMINARY ALLOCATION

IUCAF

NRAO

“RFI is what happens when spectrum management fails”

- But this *also* happens when spectrum management fails:

Tacoma, WA, Dec 2017
3 dead for lack of train
control on maiden run of this
new train line, operator took
a 25 mph curve at 78 mph

Harper's Ferry, WV Dec 2019
Appalachian trail closed

Thanks for inviting me

