
GeneLab Strategic Plan: Perspectives and Thoughts

Todd M. Smith Ph.D. Digital World Biology
Committee on Biological and Physical Sciences in
Space, Washington DC, April 1, 2015

Agenda

- All about me
- Software experiences
- Initial thoughts
- Perspectives as a provider and user

Profile

PhD – Medicinal Chemistry (Natural Products), P-Doc Genome Project (BRCA1)

Geospiza (GeneSifter – LIMS / Analysis) > PerkinElmer
Sanger, microarray, NGS

Bench > Software
Excel crunching
Began programming
Lab processing (QC)
Analysis automation
Visualization
Data annotation
Databases (using, building, mining)

Founder
CEO/CTO
Funding – Sales, Grants, Angels
SBIRS
Phrap reengineering
HDF (databases)
Variant discovery,
annotation
w/ Dr. Christopher Mason

Digital World Biology

STEM education
Biotechnology training
Community development
Consulting –
Sr. Level Advising
Project development, business analysis, requirements
Grant development
Market/Business development

Software Experience

GeneSifter Lab Edition

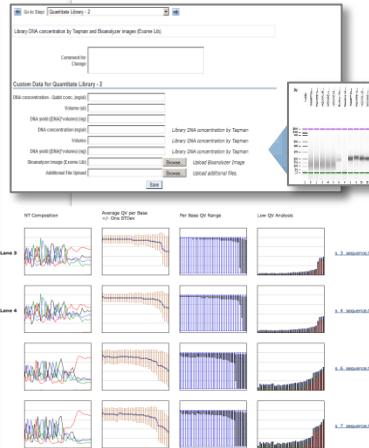
RNA-Seq

ChIP-Seq

GeneSifter Analysis Edition

Me-Seq

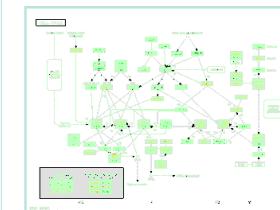
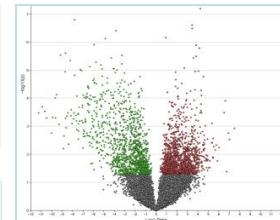
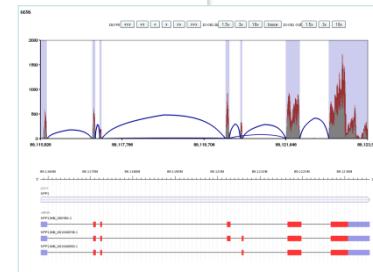
Var-Seq


My-Seq

Application-specific Lab Workflows

Kits
Best Practices

Not Ready (12) Ready (1)			
Item	Label	Required	Collect Info
<input type="checkbox"/>	Sample Received	No	No
<input type="checkbox"/>	Run Genomic DNA	No	No
<input type="checkbox"/>	Shear Genomic DNA	No	Yes
<input type="checkbox"/>	End-Repair DNA	No	No
<input type="checkbox"/>	Ligate P1 and P2	No	No
<input type="checkbox"/>	Adapters	No	No
<input type="checkbox"/>	Size Selection of DNA on E-Gel SizeSelect	No	Yes
<input type="checkbox"/>	Not-Translate and Amplify the Library by PCR (12 cycles)	No	Yes
<input type="checkbox"/>	Quantitate Library -1	No	Yes
<input type="checkbox"/>	Perform Exome	No	Yes
<input type="checkbox"/>	Perform	No	No
<input type="checkbox"/>	Perform hybridization and Amplification by PCR (8-12 cycles)	No	Yes
<input type="checkbox"/>	Quantitate Library -2	No	Yes
<input type="checkbox"/>	Library Pass-Fail	No	Yes

Application-specific Data Analysis

Standard algorithms
Pipelines

Database	Reads In	Matched	% of Total	0MM	1MM
Adapter/Primer	11,743,853	426,245	3.65	428,245	0
rRNA, snRNA	11,315,608	118,465	1.01	57,768	18,491
miRBase	11,197,143	707,430	6.02	608,410	98,798
Exon/Intron	10,489,713	1,667,704	14.2	1,309,231	318,691
Intergenic	8,822,009	7,373,383	62.79	5,742,623	1,425,589
Not Mapped	11,743,853	1,446,626	12.34		

Repeat & Compare Data Between Many Samples

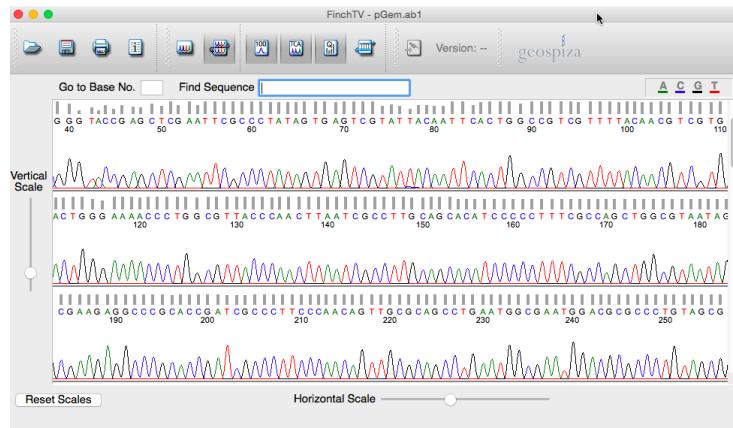
Adoption (Sales)

GeneSifter Lab Edition ~200 of Labs – Enterprise \$10K's-\$100K's deals

Value propositions –

Core lab directors - business and scientific data production delivery

ABRF community, presentations, research groups – still go!


Biotech (Pharma) scientist – integrated data processing (assembly, BLAST)

GeneSifter Analysis Edition ~500/1000 labs – Researchers, \$1K's-\$5K's

Value propositions

Research scientists – ease of use, open source (verifiable) tools, cloud

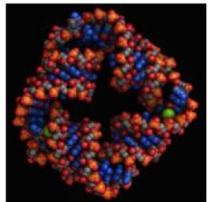
Supports common use cases very well – Microarray, RNA-Seq, Exome

FinchTV >300,000 users

Value propositions

Anyone with a Sanger Sequence file - Full page views, integrated BLAST, drag and drop UI, ease of use

Market builder


Digital World Biology: Education/Consulting

Digital World Biology Courses

Welcome to Digital World Biology Courses

[View](#) [Unpublish](#)

Hi Austin Bioinformatics BITC2350 students! I've sent log in info to all of you. If you're having trouble logging in use the "Reset Password" link to have the site send you log in info. It uses your school email address and the user name I came up with (FirstnameFirstletterlastname, i.e. SandraP).

Email me if you have questions about logging in. sporter at austincc dot edu

Sandra

Announcements

Learning Guide 3 is posted

Submitted by SandraP on Mon, 02/02/2015 - 23:12

This week we start learning about proteins and amino acids.

[Read more](#)

Tip of the day

Submitted by SandraP on Mon, 02/02/2015 - 01:10

Did you know that clicking the web site name takes you to the front page with all the new announcements?
Give it a try!

[Read more](#)

The A2 quiz and review quiz one are ready.

Submitted by SandraP on Mon, 02/02/2015 - 01:08

Sorry for the delay. Both quizzes are ready to go. You can find the links in Learning Guide 2.

[Read more](#)

User menu

- [My work](#)
- [My workspace](#)
- [My account](#)
- [Log out](#)

Instructor tools

- [Students](#)
- [Unknowns](#)
- [Download work](#)
- [Quiz reports](#)
- [Notes](#)
- [Site documentation](#)

BITC2350 Items

- [Announcements](#)
- [Learning guides](#)
- [Discussions](#)
- [Schedule & Syllabus](#)

Questions?

- [Post Questions Here](#)

Resources

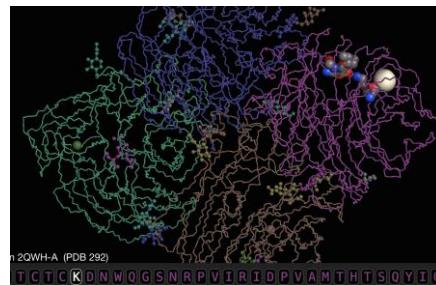
- [Digital World Biology](#)
- [Get Molecule World](#)
- [NCBI](#)
 - [BLAST](#)
 - [ORF Finder](#)
- [Nucleic Acids Research Database Issue 2015](#)

Bioinformatics
Education

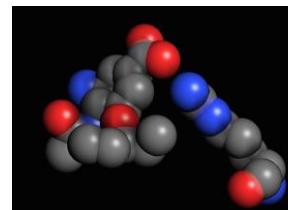
Software / Databases
Cn3D | Molecule
World
Excel
BLAST
Word
ORF finder
Image editing
NCBI resources
Web browsers!!

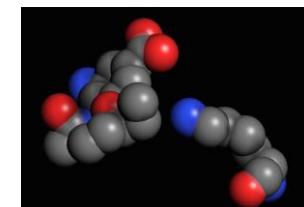
15-20
activities

Essential Computer Literacy

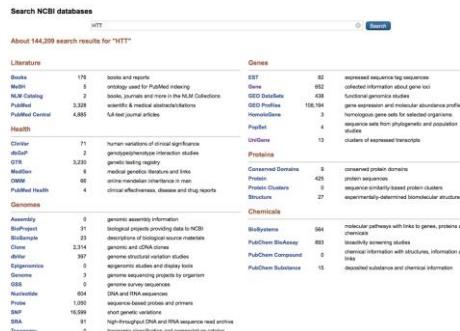
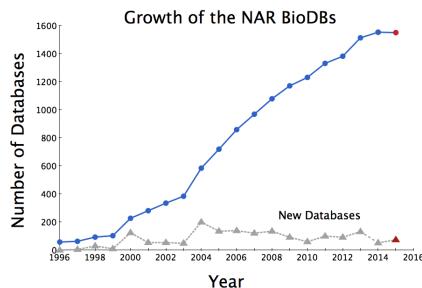


1 Sequence


Influenza Virus Neuraminidase


Structure

Function

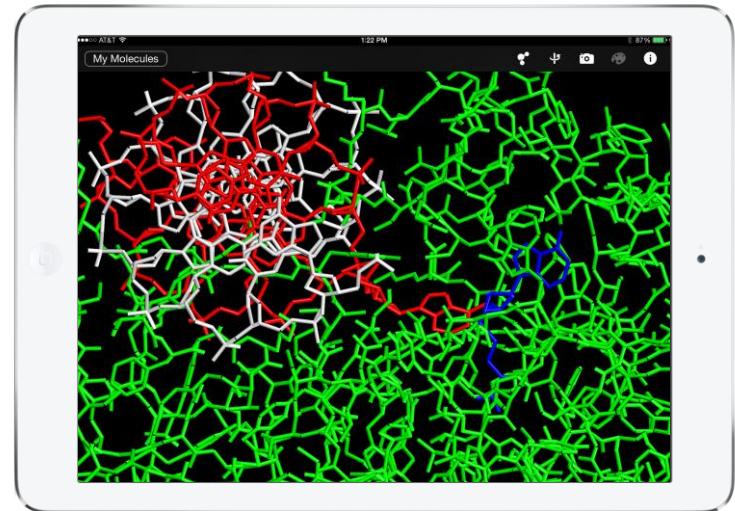
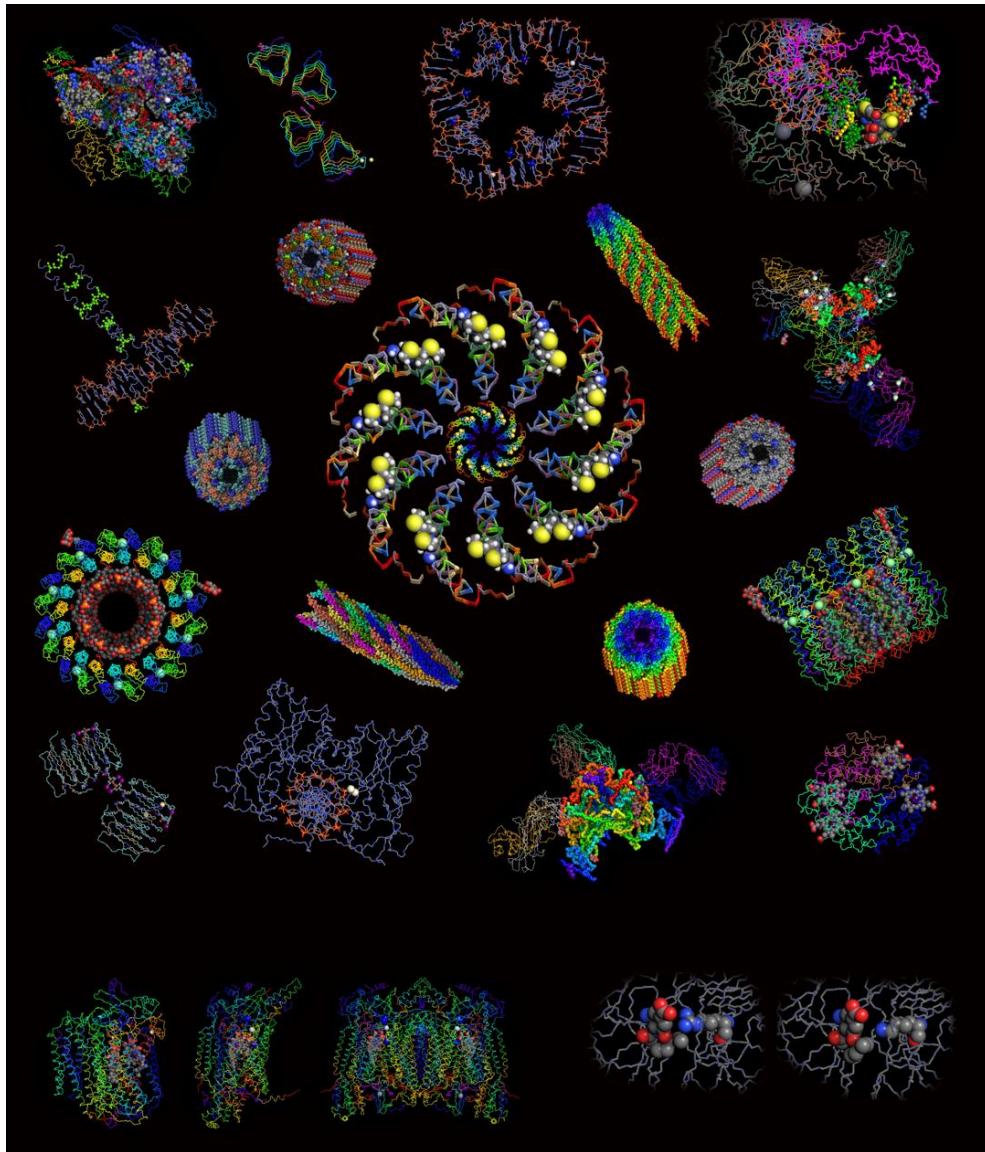



Tamiflu Resistance

2 Understand information resources

Data, Information, Knowledge

HTT @ NCBI
144K results over
39 DBs



3 Work with data and software

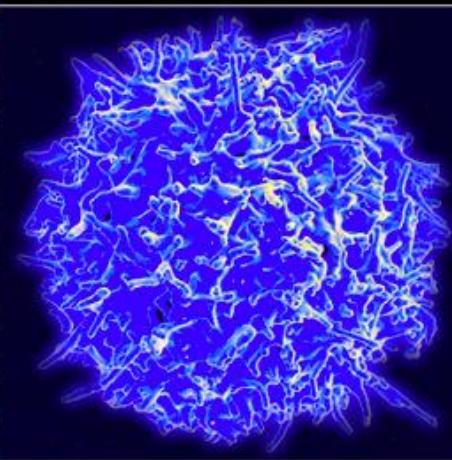
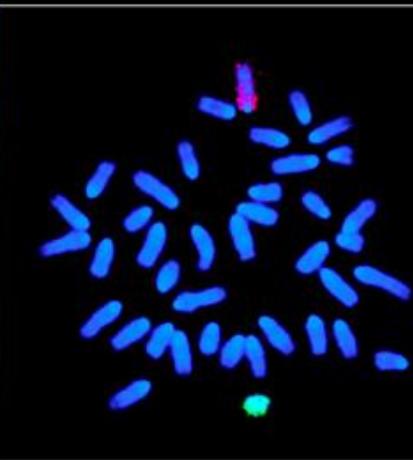
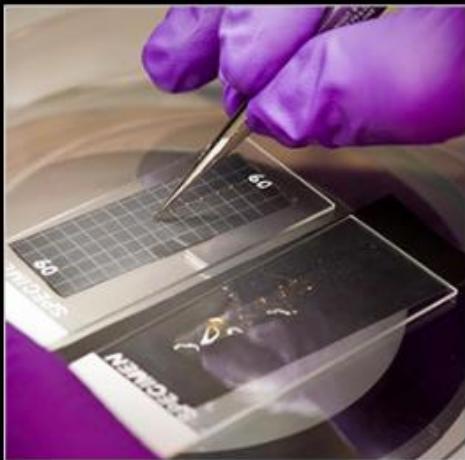
Molecular sequences, data values, structures

Text, graphs, images

Computer programs, software interfaces

Molecule World™

Blending art and science to
explore the sequence, structure,
function relationship




- Implementation is hard
 - Big visions become incremental advances
 - Complex technology, continuous change
 - Data is never analyzed as well/deeply as it could be
- Adoption is harder
 - Informatics, big solutions noise is high
 - Systems and tools are hard to use
 - Every step of the collection, reduction, analysis, discovery phase has 10's/100's of choices

 - Solutions must be compelling, solve problems
 - Community is critical

GeneLab

Expanding the Impact of Biological Research in Space

Strategic Plan

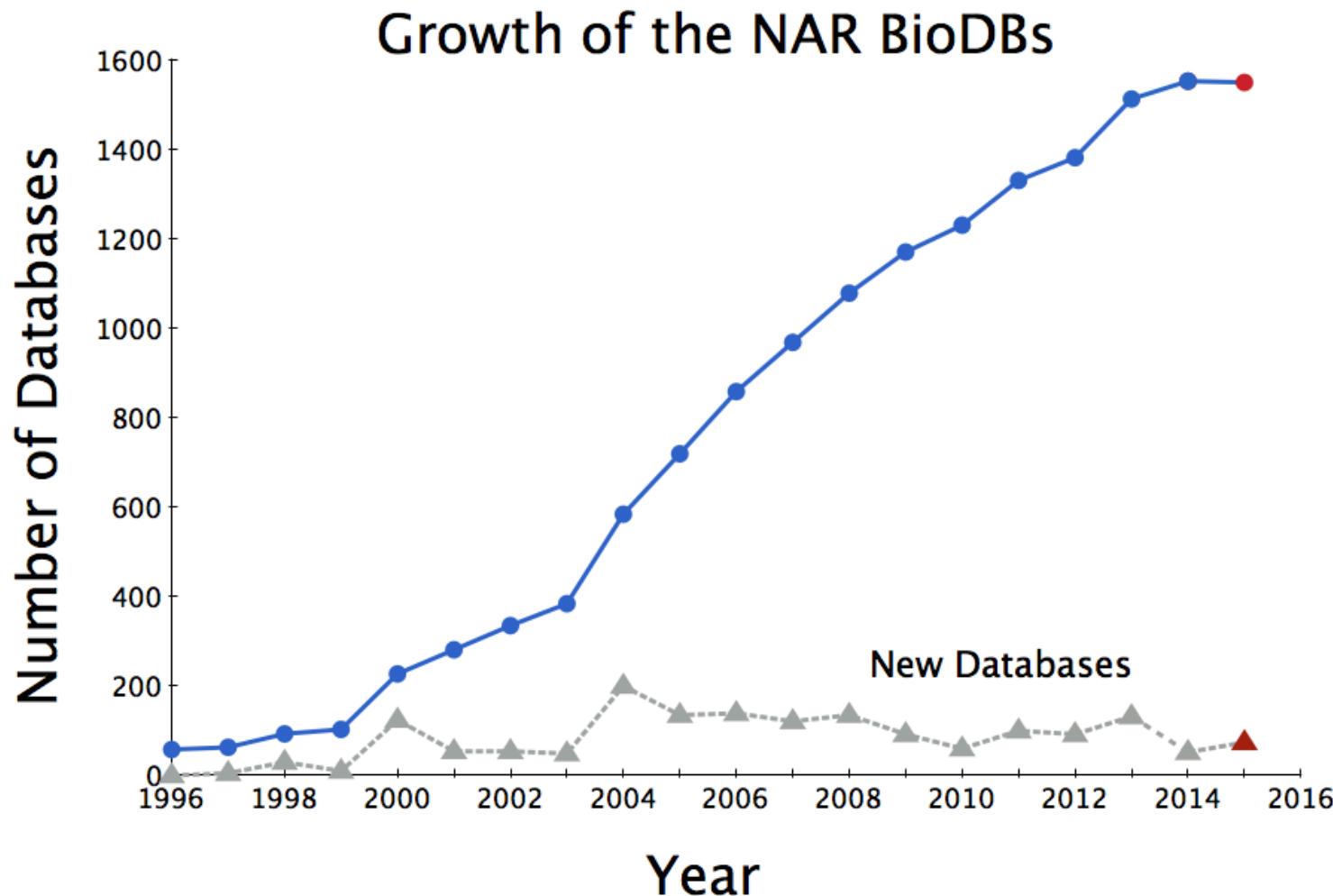
- Create a biorepository
 - Samples collected in space, over time, experiments
 - Samples collected from terrestrial controls
- Use samples for collecting a variety of “omics” data
- Metadata will be recorded for mining and analysis
- Data and information will be stored in a database
- Analysis will be performed with many tools
- Data and results will be made available for others
- People will be encouraged to utilize the resources to enhance knowledge and discovery

Today's Questions

- Mission/Vision
 - Value to scientific community?
 - Data or ways to work with the data?
- Implementation
 - Risks of lock in
 - Transitioning data
 - Interfaces
 - Longitudinal data
 - Data integration
 - Metadata (what kinds)
 - Standards
 - Legacy data
 - Experiment scale (research design)
 -

All have a Single Answer

- It depends ...


Challenges

- Clear use cases are lacking
 - What data will be collected?
 - Why is it collected? What is expected?
 - Who is expected to use it?
 - What is the initial market?
- A good example – STEM engagement activities at the K-12 and college levels to engage Americans in the NASA mission, attract and retain students in STEM disciplines, strengthen NASA/Nation's future workforce
- What will compel scientists?

Scientists are Overwhelmed – Why More?

<http://scienceblogs.com/digitalbio/2015/01/30/bio-databases-2015/>

Databases at NCBI

Search NCBI databases

[Help](#)

Results found in 14 databases for "nosiheptide"

Literature

Books	1	books and reports
MeSH	1	ontology used for PubMed indexing
NLM Catalog	0	books, journals and more in the NLM Collections
PubMed	61	scientific & medical abstracts/citations
PubMed Central	84	full-text journal articles

Health

ClinVar	0	human variations of clinical significance
dbGaP	0	genotype/phenotype interaction studies
GTR	0	genetic testing registry
MedGen	1	medical genetics literature and links
OMIM	0	online mendelian inheritance in man
PubMed Health	0	clinical effectiveness, disease and drug reports

Genomes

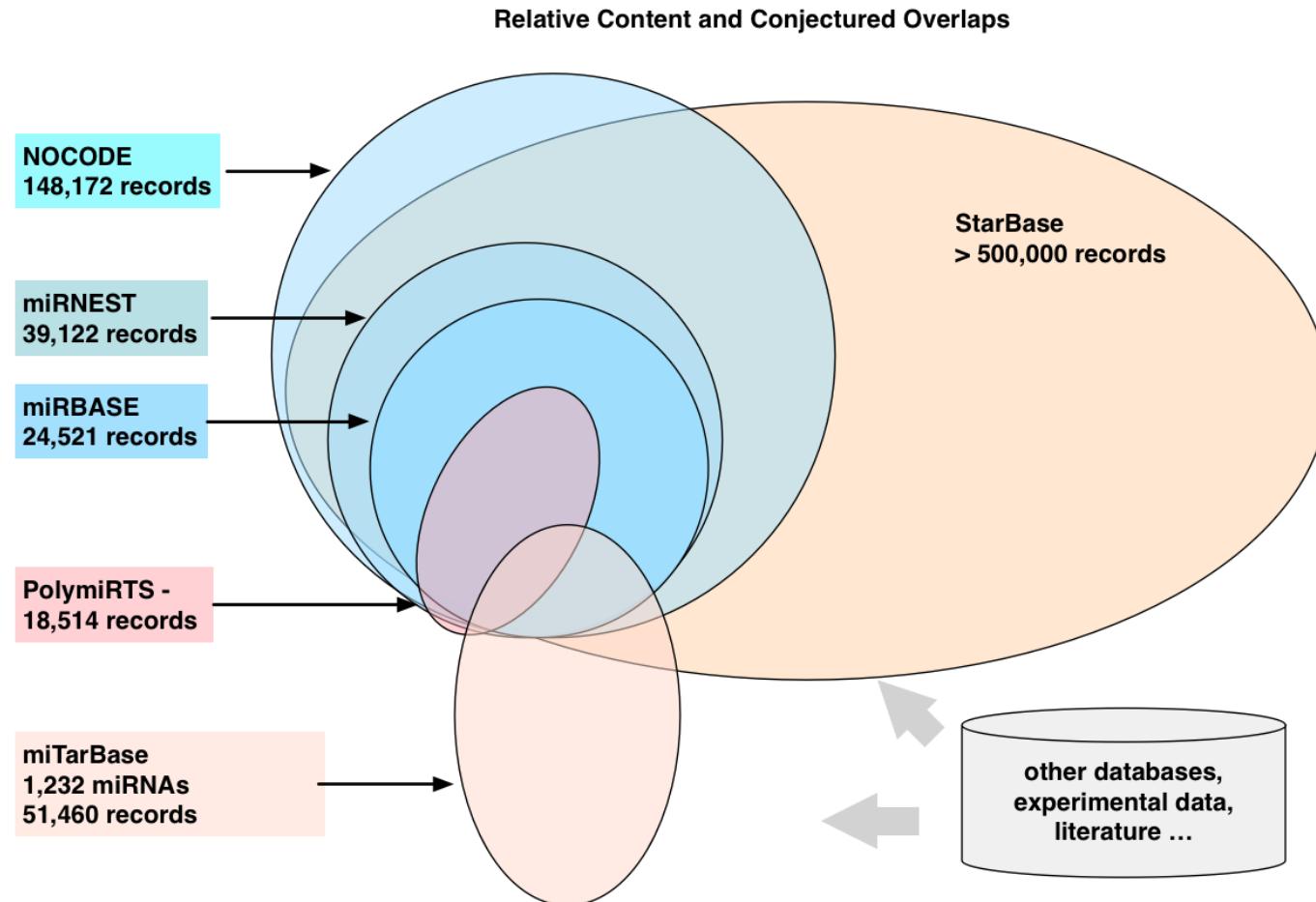
Assembly	0	genome assembly information
BioProject	0	biological projects providing data to NCBI
BioSample	0	descriptions of biological source materials
Clone	0	genomic and cDNA clones
dbVar	0	genome structural variation studies
Epigenomics	0	epigenomic studies and display tools
Genome	0	genome sequencing projects by organism
GSS	0	genome survey sequences
Nucleotide	398	DNA and RNA sequences
Probe	0	sequence-based probes and primers
SNP	0	short genetic variations
SRA	0	high-throughput DNA and RNA sequence read archive
Taxonomy	0	taxonomic classification and nomenclature catalog

Genes

EST	0	expressed sequence tag sequences
Gene	12	collected information about gene loci
GEO DataSets	0	functional genomics studies
GEO Profiles	0	gene expression and molecular abundance profiles
HomoloGene	0	homologous gene sets for selected organisms
PopSet	0	sequence sets from phylogenetic and population studies
UniGene	0	clusters of expressed transcripts

Proteins

Conserved Domains	0	conserved protein domains
Protein	442	protein sequences
Protein Clusters	1	sequence similarity-based protein clusters
Structure	10	experimentally-determined biomolecular structures


Chemicals

BioSystems	53	molecular pathways with links to genes, proteins and chemicals
PubChem BioAssay	10	bioactivity screening studies
PubChem Compound	5	chemical information with structures, information and links
PubChem Substance	13	deposited substance and chemical information

Lists, links, and tools

Domain specific views and hidden gems – content and knowledge

Specialized Databases Live in Ecosystems

Data repositories are indicated by circles and blue tints, and integrative resources indicated by ellipses and orange tint. For each database the number of records is shown and possible (yet unknown) overlaps of information between the databases is suggested using a venn diagram.

© Digital World Biology 2014

Recommendations

- Define applications to drive the requirements
- Stakeholders (people) – users, sponsors, agents ... need to be identified and described (business analysis, personas) and engaged
- Determine the initial collaborators, build on examples
- Relevance to the rest of us earthlings – understanding nutrition?