




**EXPLORESPACE TECH**  
TECHNOLOGY DRIVES EXPLORATION

## Cryogenic Fluid Management

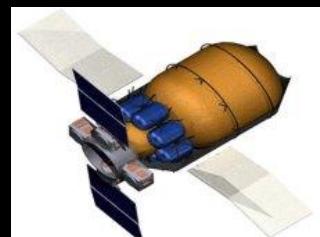
National Academies: Biological and Physical Sciences

John Dankanich

10/20/2022

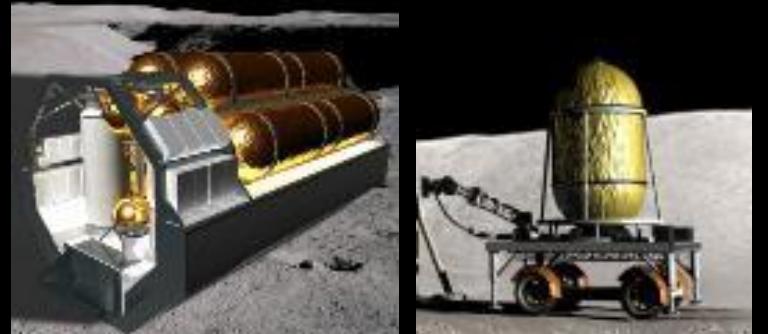
# GO: Develop cryogenic storage, transport, and fluid management technologies for surface and in-space applications.




Developing technologies for near zero boil off storage, high efficiency chill-down and liquification, propellant transfer, and instrumentation to support Mars transportation and surface ISRU architectures.

## STORAGE

- LOX, LCH<sub>4</sub>, LH<sub>2</sub>
- Near Zero Boil-off – Architecture / mission dependent


### Critical Technologies

- Active Thermal Control
- High Performance Insulation
- Structural Heat Rejection/Intercept
- Pressure Control
- Operations
- Near Zero Boil-off
- Structural Multilayer Insulation
- Low conductance structures
- High Efficiency High Capacity 20k and 90k Cryocoolers
- Destratification
- Unsettled Mass Gauging
- Thermal Control Coatings



## LIQUEFACTION

- H<sub>2</sub>, O<sub>2</sub>, CH<sub>4</sub>
- Initial system performance: 2 kg/hr of O<sub>2</sub> and .3 kg/hr of H<sub>2</sub>
- Soft Vacuum insulation: 1.5 W/m<sup>2</sup> at 250 K




## TRANSFER

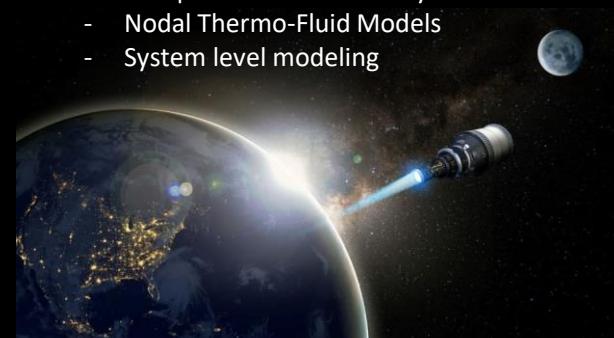
- Propellant losses  $\leq$ 1% during transfer
- <1% residual in supply tank

### Critical Technologies

- Component Technologies
- Operations
- High efficiency chill down of tank and lines
- Automated Cryo-Couplers
- Low-leakage valves/actuators
- Flow Meters
- Efficient Liquid Acquisition Devices
- Transfer pump



## NON-PRIMARY PROPULSION


- Integrated RCS
- Fuel Cells
- ECLSS

- Application Specific CFM Capabilities
- Uses components and processes from other categories



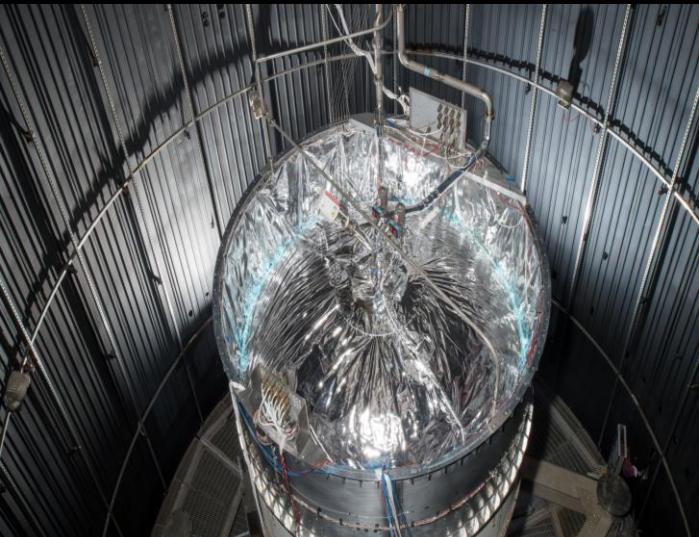
## INTEGRATED OPERATIONS / PREDICTIVE PERFORMANCE

- Advanced instrumentation, data acquisition and signal processing
- Integrated Demonstration
- Accurate and robust a priori microgravity thermal-fluid predictions
  - Validated foundational physics in High Fidelity tools
  - High-to-Low Fidelity Model Integration
- Integrated System Performance Analysis
  - Low predictive uncertainty
  - Nodal Thermo-Fluid Models
  - System level modeling



# CFM State of the Art




CFM capabilities must address the operational implementation and use of the technologies in a system, and the technical design of the CFM system. Many of the components required to close the gaps are the same but have diverging requirements or implementation strategies that change how the technology is used.

## STORAGE

- Extensive experience in ground demonstration
- Longest H<sub>2</sub> cryogenic propulsion storage system has performed storage operations in space is 9 hrs
- Performed 4.5 Month CH<sub>4</sub> subscale storage on RRM3

### KEY Design Details

- Tank pressure regulation
- Methods of venting
- Structural heat load
- Total heat input over time
- Active cooling – **1W lift @ 20k; 20W lift @ 90k**



## LIQUEFACTION

- **Ground based demonstration** and analytical performance model validation of LN<sub>2</sub>



### KEY Design Details

- Condensation, fluid physics, fluid purity
- Active cooling integration
- High performance insulation in appropriate environment




## TRANSFER

- Component brassboard hardware ground testing only

### Key Design Details

- Pump or pressure driven transfer
- High efficiency chill down of tank and lines
- Active cooling
- Low-leakage valves/actuators, leak detection
- Phase separation/Liquid acquisition

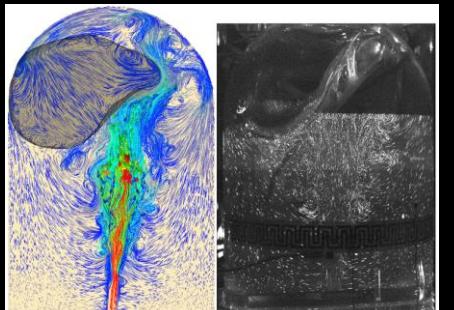



## NON-PRIMARY PROPULSION

- **Ground based testing** of Integrated RCS in thermal vacuum

### KEY Design Details

- Application specific technologies and operational processes




## INTEGRATED OPERATIONS / PREDICTIVE PERFORMANCE

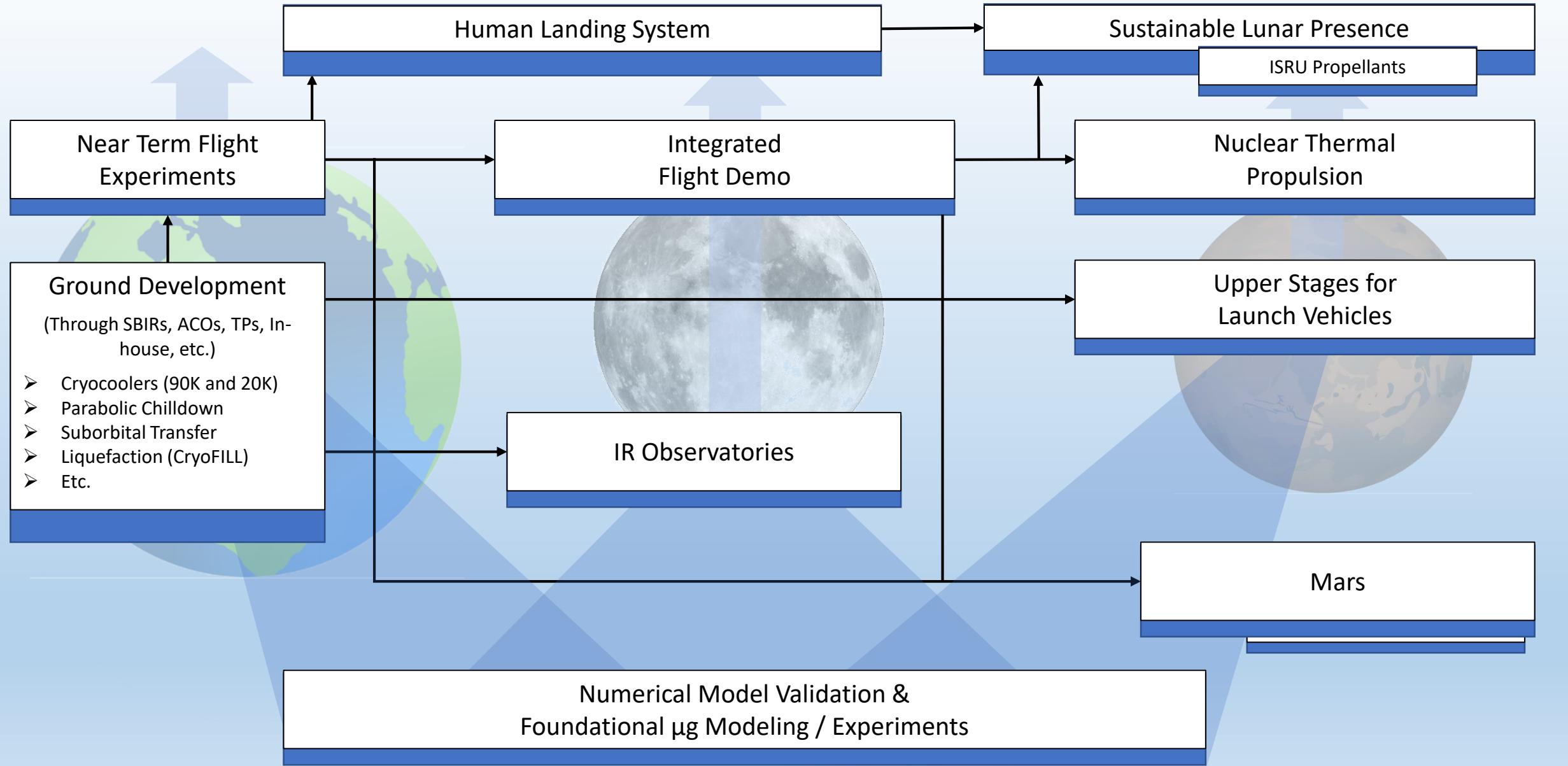
- Fluid property knowledge gaps
- Instrumentation
- Model development and validation for both high and low fidelity applications

### KEY Design Details

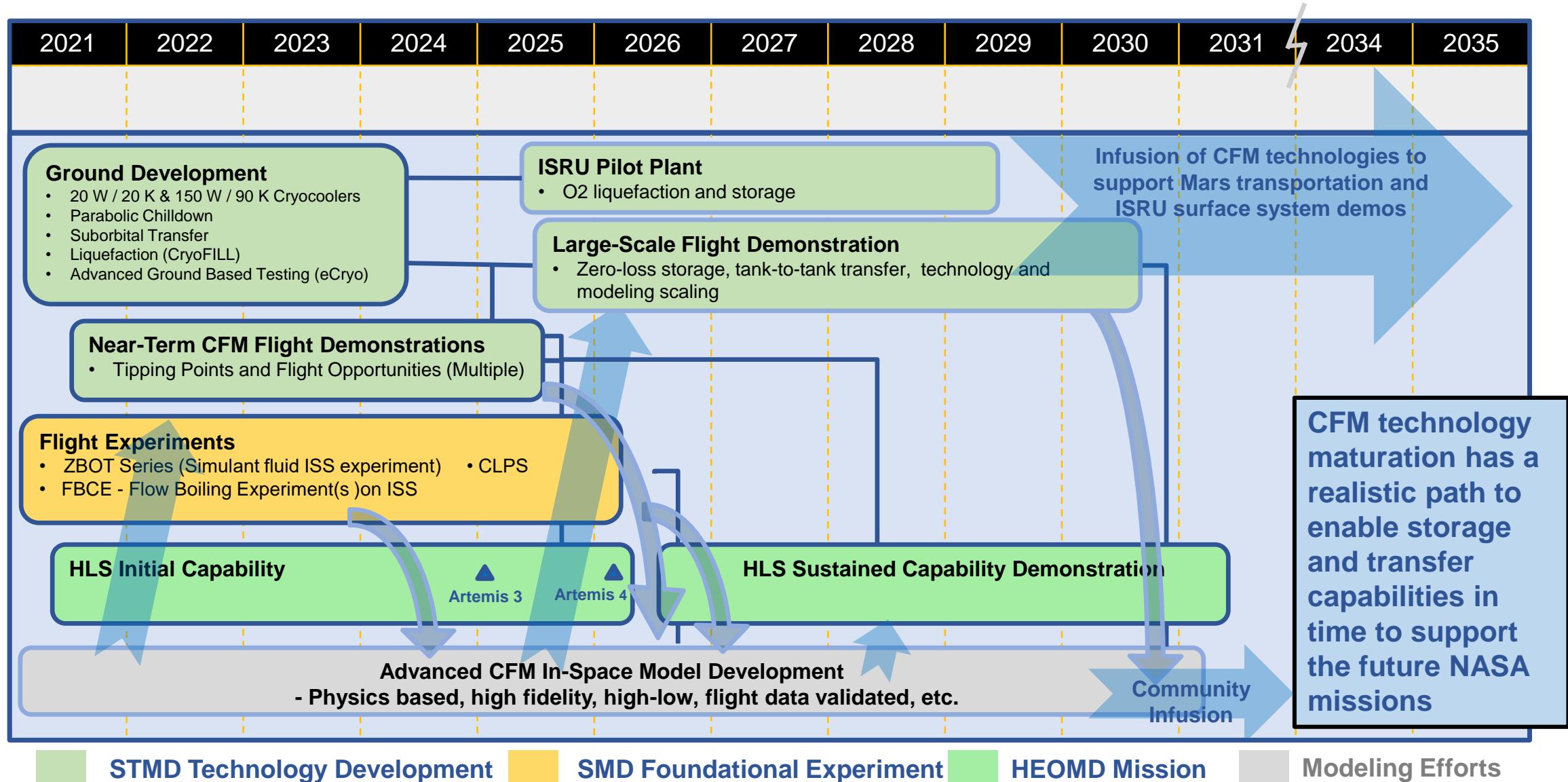
- Zero-G Mass Gauging
- Operational and predictive fluid dynamics and thermodynamics



# CFM Critical Technologies Current Investments


| CFM Critical Technology Gaps                    | Cross Cutting or Fluid Specific | Current TRL | Gap Addressed**          |
|-------------------------------------------------|---------------------------------|-------------|--------------------------|
| Low Conductivity Structures                     | Cross Cutting                   | 6           | Tipping Point (TP)       |
| High Vacuum Multilayer Insulation               | Cross Cutting                   | 6           | FY20 TP                  |
| Sun Shields (deployment mechanism)              | Cross Cutting                   | 5           | JWST / TP                |
| Tube-On-Shield BAC                              | Cross Cutting                   | 5           | TP, In-house             |
| Valves, Actuators & Components                  | Cross Cutting                   | 4-5         | TP, In-house             |
| Vapor Cooling                                   | Fluid Specific                  | 6           | TP, In-house             |
| Propellant Densification                        | Fluid Specific                  | 5           | TP, In-house             |
| Unsettled Liquid Mass Gauging, multiple methods | Cross Cutting                   | 4-7         | TP, ECI, FO, In-house    |
| Sub-surface Helium Pressurization in Micro-g    | Cross Cutting                   | 5           | ZBOT / TP                |
| Line Chilldown (MPS, iRCS, Transfer)            | Cross Cutting                   | 5           | TP                       |
| Pump Based Mixing                               | Cross Cutting                   | 5           | ZBOT / TP                |
| Thermodynamic Vent System                       | Cross Cutting                   | 5           | TP                       |
| Tube-On-Tank BAC                                | Cross Cutting                   | 5           | In-house                 |
| Liquid Acquisition Devices                      | Fluid Specific                  | 5           | TP                       |
| Advanced External Insulation                    | Cross Cutting                   | 4           | Paragon / CELSIUS        |
| Automated Cryo-Couplers                         | Cross Cutting                   | 4           | TPs, HLS, ECI            |
| Cryogenic Thermal Coating                       | Cross Cutting                   | 4           | TP, In-house             |
| High Capacity, High Efficiency Cryocoolers 90K  | Cross Cutting                   | 4           | In-house                 |
| Soft Vacuum Insulation                          | Cross Cutting                   | 3           | MAV (MSR)                |
| Structural Heat Load Reduction                  | Cross Cutting                   | 3           | CIF                      |
| Propellant Tank Chilldown                       | Cross Cutting                   | 4           | FY20 TP                  |
| Transfer Operations                             | Cross Cutting                   | 4           | FY20 TP                  |
| High Capacity, High Efficiency Cryocoolers 20K  | Fluid Specific                  | 4           | In-house                 |
| Liquefaction Operations (MAV & ISRU)            | Fluid Specific                  | 4           | TP / In-house            |
| Para to Ortho Cooling                           | Fluid Specific                  | 4           | TP                       |
| Cryogenic Flow Meter                            | Both                            | 4           | TP w/o data rights       |
| Autogenous Pressurization in Micro-g*           | Fluid Specific                  | 4           | ZBOT / TP                |
| CFM Modeling Capability                         | Cross Cutting                   |             | ZBOT, In-house, STRG, FO |

- NASAs CFM Portfolio has contributed extensively to bringing CFM critical technologies to TRL 4-6
- Significant SBIR program leverage
- Nearly all are receiving active investments
- Recent focus has been on advancing the CFM component and subsystem technologies beyond the mid-range TRL level and developing integrated flight demonstrations to support NASAs future missions
- Future focus will be closing out the current lower TRL investments and development of the near-term flight demonstrations
- HLS Leverage for multiple components
- Industry leverage (e.g. Lockheed Martin, Blue Origin, SpaceX)
- SMD ZBOT demonstrations and model validation
- High to low fidelity model development and validation to predict future mission capabilities


\* Note: Traditional settled pressurization methods TRL 9

\*\* Note: Addressing the gap does not in all cases equate to gap closure; some gaps are fluid or architecture specific; the goal is to develop high-fidelity models to support mission designs.

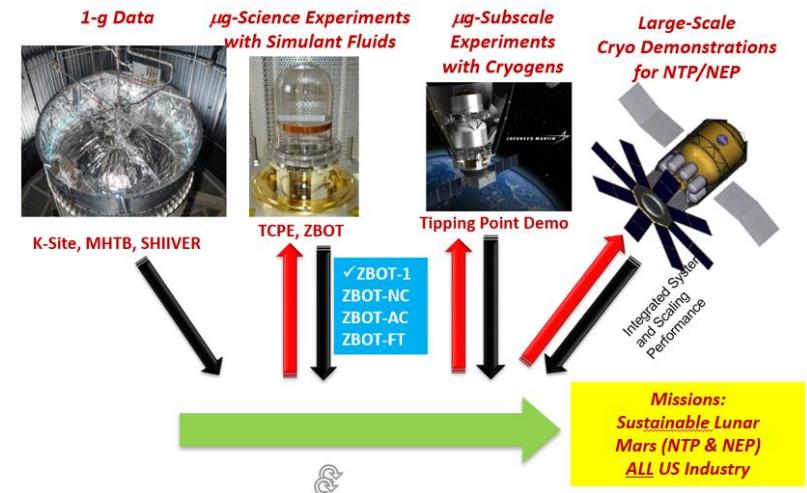
# Long Term CFM Strategy and End User Applications



# CFM Notional Near-Term Roadmap



# Flight Demonstration are Required to Mature Tech


| Capabilities Needed                                  | Major CFM Technologies For In-Space System Concepts                        | TRL6+ Reliant on Micro-Gravity Demonstration? | NEP / Chem, SEP / Chem, All-Chem (CH <sub>4</sub> Propellant) | NTP Vehicle, All-Chem (H <sub>2</sub> Propellant) | Artemis Sustaining Missions (H <sub>2</sub> or CH <sub>4</sub> Propellant) |
|------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|
| <b>Propellant Storage throughout Mission</b>         | TVS & Injector                                                             | Y                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | MLI                                                                        | N                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | 150W / 90K Cryocooler                                                      | N                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | Broad Area Cooling (Tube on Shield)                                        | N                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | 20W / 20K Cryocooler                                                       | N                                             | -                                                             | X                                                 | X                                                                          |
|                                                      | Broad Area Cooling (Tube on Tank)                                          | Y                                             | -                                                             | X                                                 | X                                                                          |
|                                                      | 2-Stage Cooling System Design & Operations                                 | Y                                             | -                                                             | X                                                 | X                                                                          |
|                                                      | OLAF* Valves                                                               | N                                             | X                                                             | X                                                 | X                                                                          |
| <b>Propellant Transfer throughout Mission</b>        | Unsettled Fluid Acquisition (LAD)                                          | Y                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | Helium Pressurization (Unsettled)                                          | Y                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | OLAF* Cryo-Couplers and Valves                                             | N                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | Transfer System Operations; Tank and Line Chilldown (Unsettled or Settled) | Y                                             | X                                                             | X                                                 | X                                                                          |
| <b>Automated Stage Operations throughout Mission</b> | Unsettled Mass Gauging Systems                                             | Y                                             | X                                                             | X                                                 | X                                                                          |
|                                                      | Advanced command & control avionics used for automated mission operations  | N                                             | X                                                             | X                                                 | X                                                                          |

# LCD MISSION OBJECTIVES INCLUDE MODELING INFUSION AS PART OF TECHNOLOGY TRANSFER

- Goal of modeling project is to close gaps in predicting the performance of cryogenic propellant in a low-gravity environment.
  - In low-g, capillary forces dominate body forces leading to non-intuitive and unexpected physics.
  - Better understanding and accurate models are critical for sizing hardware and operations for storage and transfer of cryogenic propellant in a low-gravity environment.
- Predictive Model Development work Includes:
  - First Principal Physics CFD model
  - Empirical based multi-node lumped models
- Models that are developed need to be anchored to experimental data in a relevant environment

**ZBOT BPS Opportunities are Critical for Anchoring CFM Models and Closing our Technology Gaps**

## Infusion of Tipping Point Demonstrations to Anchor Cryogenic Models



## Current CFM Model Maturity Level (CFD-Notional)

|                           |                                              | Model V&V                |    |                        |                        | Data Pedigree          |                        |             |             |
|---------------------------|----------------------------------------------|--------------------------|----|------------------------|------------------------|------------------------|------------------------|-------------|-------------|
| Operation                 | Important Process/Mechanism                  | Numerical Implementation |    | 0g (Unsettled)         |                        | 1g (Settled)           |                        | 0g (Scaled) |             |
|                           |                                              | 1g                       | 0g | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
| Self-Pressurization       | Evaporation/Condensation                     | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
|                           | Boiling                                      | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
| Pressure Control          | Axial Jet Mixing                             | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
|                           | Droplet Spray-bar                            | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
| Autogenous Pressurization | Broad Area Cooling                           | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
|                           | Unsubmerged                                  | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
| Tank Chill-down & Filling | Submerged                                    | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
|                           | Inject-Hold-Vent Cycles                      | ☒                        | ☒  | ZBOT-1                 | ZBOT-2                 | ZBOT-3                 | ZBOT-4                 | RBM3        | Future Demo |
| Transfer line             | Chill-down                                   | ☒                        | ☒  | FBC Line<br>Chill-down | FBC Line<br>Chill-down | FBC Line<br>Chill-down | FBC Line<br>Chill-down | GRCA-1N2    | Future Demo |
|                           | Heating/Boiling during steady state transfer | ☒                        | ☒  | FBC                    | FBC                    | FBC                    | FBC                    | GRCA-1N2    | Future Demo |
| Non-Condensable Effects   | Pressurization                               | ☒                        | ☒  | ZBOT-4C                | ZBOT-4C                | ZBOT-4C                | ZBOT-4C                | Other       | Future Demo |
|                           | Axial Jet Condensation During Filling        | ☒                        | ☒  | ZBOT-4C                | ZBOT-4C                | ZBOT-4C                | ZBOT-4C                | BuBuild-1N2 | Future Demo |
| Slosh                     | Droplet Phase Change                         | ☒                        | ☒  | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | MHTE        | Future Demo |
|                           | Like Pressurant                              | ☒                        | ☒  | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | DIA/JAXA    | Future Demo |
| Liquefaction              | Unlike Pressurant                            | ☒                        | ☒  | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | TP's        | Future Demo |
|                           | Partial-g hot vapor condensation             | ☒                        | ☒  | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | CryoFILL    | Future Demo |
|                           | Transient Behavior                           | ☒                        | ☒  | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | ZBOT-0N                | CryoFILL    | Future Demo |

# Capability Gap Performance Goals

## When is the desired outcome for CFM achieved?

- When the CFM community has the technology to enable low-risk cryogenic fluid management operations with predictive performance capability across all applications, configurations, fluids and scales.

## So what's the real challenge?

- There are A LOT of applications, with a range of configurations and methods of implementing the many technologies over multiple fluids over vast scales.
  - Technology performance is highly dependent on interfaces and configurations
  - Physical processes change as scales and fluids change

The envisioned future state for CFM can only be achieved through digital representations of the CFM systems anchored by BPS experiments.

The BPS ZBOT experiment opportunities are at a premium. Expansion to include Suborbital (minutes of  $\mu$ -g) and CLPS (Lunar-g) BPS opportunities enables more fluids and configurations to be tested and maximize ISS ZBOT opportunities; adding confidence for transportability of results.