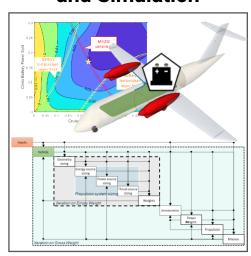


Sustainable Electrification of Transportation Systems

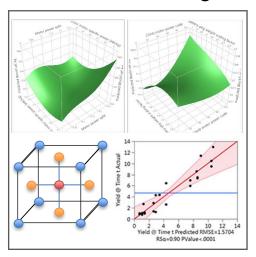
Gökçin Çınar, PhD

Assistant Professor
Aerospace Engineering Department
University of Michigan
cinar@umich.edu
http://gokcincinar.com

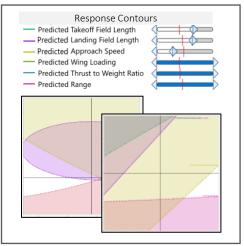

07/11/2023

Enablers

Integrated Design of Environmentally-friendly Aerospace Systems (IDEAS) Lab


We aim to bring a **holistic approach** that accounts for the **system-level** and **life-cycle** impact of greenhouse gas emissions in the **systems design and operation of future aircraft**

Multi-physics Modeling and Simulation


Analyze, understand and design the complex system behavior using model-based systems engineering (MBSE)

Statistical Methods and Probabilistic Design

Reduce the uncertainty associated with novel concepts in early design phases

Design Space Exploration and Optimization

Support decision making and explore the vast and uncharted design space under varying constraints

Electrified Aircraft Propulsion

The Light Side of Electrification

True zero emissions (in flight)

Quieter

Propulsive flexibility

High efficiency

Reliability and maintainability (?)

Cost of electricity (?)

The Dark Side of Electrification

Jet A:

11.9 kWh/kg

Lithium-Ion Battery:

0.2 kWh/kg

~60 times heavier
Thermal issues

Safety and certification

Battery life and degradation

Lifecycle cost of CO₂

A simple comparison

Electrifying a single aisle plane

Boeing 737-800

160 passengers 525 mph (844 km/h)

- Range: 2500 NM (4630 km)
- Fuel mass: 46,000 lb (20,865 kg)

Assuming 80% powertrain efficiency

- For the same mass: 300 Wh/kg battery can only fly 216 NM → 8.6% of the original range
- For the same range: 3,300 Wh/kg battery required to fly the original range → 16.5 times of current tech!

A simple comparison

Electrifying a regional plane

ATR 42-600

48 passengers 332 mph (535 km/h)

Conventional (Jet-A)

• Range: 726 NM (1,345 km)

• Fuel mass: 2247 lb (1,019 kg)

Fully Electric

Assuming 80% powertrain efficiency

For the same range:

- ~22,000 lbs (10,000 kg) battery mass at 300 Wh/kg \rightarrow x10 of fuel mass
- 1,300 Wh/kg battery required at the same fuel mass → 6.6 times of current tech!

Electrified Aircraft: A Diverse Design Space

Uber Elevate
Urban Air Mobility
Image Credit: uber.com

Pipistrel Alpha Electro
Electric Propulsion
Image Credit: pipistrel.si

NASA Lift + Cruise eVTOL
Turboelectric Propulsion
Image Credit: nasa.gov

NASA X-57 Mod IV
Distributed Electric Propulsion
Image Credit: nasa.gov

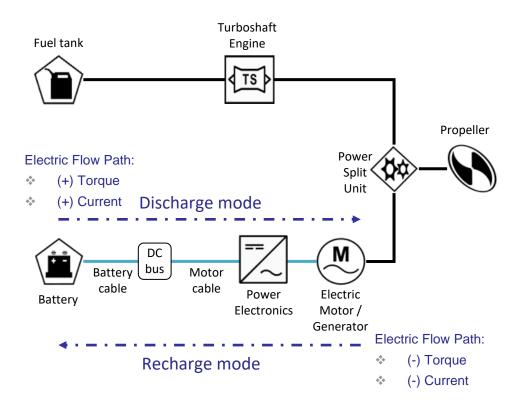
UTC Hybrid-Electric Vehicle
Parallel Hybrid Electric Propulsion
Image Credit: tech.utc.com

Hybrid

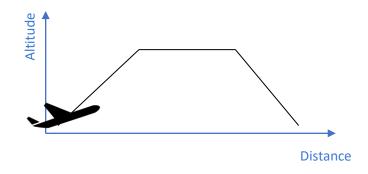
NASA Turboelectric ULI Hybrid Turboelectric Distributed Propulsion

ESAero ECO-150
Turboelectric Distributed Propulsion
Image Credit: nasa.gov

NASA STARC-ABL
Partially Turboelectric Propulsion
Image Credit: nasa.gov


More range and payload

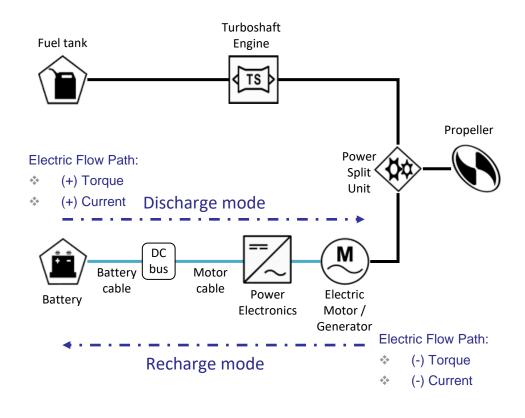
100% More Battery 0%



Electrified Aircraft Propulsion and Operation

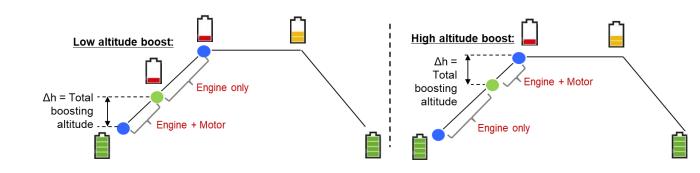
Parallel Hybrid Electric Architecture

Notional mission profile



- How much electric power?
- **When** to electrify?
- How long to electrify?

Electrified Aircraft Propulsion and Operation


Parallel Hybrid Electric Architecture

Modes of Operation

- Takeoff power shaving
- Climb e-boost

- Electric taxi
- In-flight battery recharge

- > How much electric power?
- > When to electrify?
- How long to electrify?

Objective: minimize fuel burn

G. Cinar, et al. "System Analysis and Design Space Exploration of Regional Aircraft with Electrified Powertrains," Journal of Aircraft, vol. 60, no. 2, pp. 382-409.

DOI: <u>10.2514/1.C036919</u>

Benefit Assessments of a 50 pax 2030 Hybrid Electric Aircraft

50 passenger Electrified Aircraft – Sensitivity Analysis:

Scenario	Block fuel (kg)	Cruise avg BSFC (lb/hr/hp)	Engine SLS rated power (kW)	Electric motor rated power (kW)	Battery capacity (kWh)	OEW (kg)	TOGW (kg)
S.0 - Advanced Conventional	1165	0.3679	1657	N/A	N/A	10419	16539
S.I - EAP no e-taxi; no charging	1151	0.3684	1598	84	75	10494	16778
comparison over S.0	-1.17%	+0.13%	-3.61%	-	-	+0.72%	+1.45%
S.II - EAP no e-taxi; battery charged	1150	0.3687	1586	83.4	37.8	10463	16657
comparison over S.0	-1.29%	+0.22%	-4.28%	-	-	+0.42%	+0.71%
S.III - EAP with e-taxi; battery charged	1074	0.3697	1456	237.0	133.2	10542	16895
comparison over S.0	-7.81%	+0.49%	-12.13%	-	-	+1.18%	+2.15%
S.IV - EAP with e-taxi; no charging	1055	0.3700	1476	240.3	205.2	10612	17127
comparison over S.0	-9.37%	+0.58%	-10.92%	-	-	+1.86%	+3.55%

Different Operation Scenarios (S):

- S.I: 5% motor power split,
 full power at takeoff, full
 climb e-boost at full power
- S.II: 5% motor power split, full power at TKO, low alt. climb e-boost at 25% motor power for 2500 ft
 - S.III: 14% motor power split, full power at takeoff, low altitude climb e-boost at full motor power for 12000 ft
 - S.IV: **14% motor power split**, full power at takeoff, full climb e-boost at full power

Corresponds to a roughly equivalent % reduction in in-flight CO₂ emissions

- G. Cinar, et al. (2023) "System Analysis and Design Space Exploration of Regional Aircraft with Electrified Powertrains," Journal of Aircraft, vol. 60, no. 2, pp. 382-409.
- · Project funded by NASA

Michigan Initiative for Sustainable Aviation (MISA)

We aim to reduce the harmful impact of aviation on the environment through new practices and radical innovation. Sustainable Aviation has broad implications across disciplines from engineering to environmental and climate sciences, public policy, business and law. University and industry partners across disciplines can converge under MISA to bring a holistic approach that considers the full life-cycle impact of design, development, and operation of aircraft systems on the environment and society.

Our research focus addresses:

- High efficiency airframes
- Propulsion technologies
- Sustainability-driven system design and integration
- Energy generation, storage, and management on- and off-ground
- Thermal and power management
- Advanced multi-functional materials and ecomaterials
- Next-gen air traffic management and operational improvements
- Environmental, economical, and societal impacts

Get involved with our efforts

To join our affiliate list and working groups, join our interest list at myumi.ch/Ek1r7 or scan the QR code

