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What we know after the Apollo seismic experiment ?

What we do not know after the Apollo seismic experiment ?
—Focus on the lunar seismic noise and seismic signals
Selected Near future missions compared to Apollo

What will NOT be made by near future mission and
associated goals

Noise challenge for very long period seismology
Noise challenge for Gravitational waves
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*1969-1977: Observational period

*1972: Full network operational

*5 stations deployed, including 4 with long term network operation (5.5 yr)
*One gravimeter deploved for GW which failed to operate nominaly
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Moon seismometers: resolution
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The Apollo seismometer noise, when no quakes, is
extremely stable and is just the sensor self noise

Horizontal component likely see tilt noise

Apollo did not constrained any lunar seismic noise apart
the thermal moonquakes and instruments artefacts
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hat Apollo did
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Impacts by Apollo

* About 1700 impacts detected by the network and signals last for hours

» detection rate are about 100 impacts /year on the LP instrument down to
resolution of about 1 Apollo DU. These rates are those predicted from Earth-
Moon impact rates (Brown et al., 2022, Lognonné et al. 2009)

» Some of the rare natural impacts were very large ( m > 10t)

Lognonné and
Kawamura,
2014
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» Selected Near future missions compared to Apollo

 What will NOT be made by near future mission and
associated goals
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2026-2030:
Return of seismology on
the Moon

Apollo versus 2026-2027 Lunar Seismic Stations
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Apollo detected Impacts versus New seismometers
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Apollo detected DMQs versus New seismometers
performances

« Large improvement in the 0.3-10 Hz bandwidth with VBBZ/FSS
« Large improvement above 10 Hz with the LEMS-SP/A3

* No improvement at long period ( < 0.1 Hz)
9/23/2025

LEMS-LP comparable to Apollo LP, CH7-LS comparable to Apollo SP ( with much better acquision)
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A3/LEMS Seismometgr
e Planned : fall - 2027 _

®  +Only one station with much better performance
______ than Apollo above 0.1 Hz

"« None with better to much better performances
below 0.1 Hz

* No Network strategy but might generate a
network

* Will focus on the South polar areas, possibly
South hemisphere and will miss global scale
view

ADDING STATIONS AWAY FROM SOUTH POLE
IS A NEAR TERM PRIORITY

ANY FUTURE MISSION MUST PROVIDE A
GLOBAL VIEW WITH CONSTRAIN ON 3D
STRUCTURE AND BETTER SENSITIVITY
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» Selected Near future missions compared to Apollo

* What will NOT be made by near future mission and associated
goals

— Global scale, requesting non long lived polar stations
—Long period seismology, including normal modes

9/23/2025
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Vhy Normal modes?

Normal modes exited by large earthquakes provide the best 1D model (e.g. PREM, Dziewonski and

Anderson, 1981) and can also infer the 3D deep to very deep structure of the Earth

This is made by measuring the splitting of these normal modes and request several pairs of source-

stations with known locations

This can be made by a single instrument measuring several located sources (e.g. DMQs on the Moon)

or several stations measuring a few quakes (e.g. Large Earthquakes with Earth VBB Network)
Koelemeijer et al. 2017

Courtesy TkalCic et al. 2025
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FSS-VBBZ (TRL9) might capture Surface waves down to 0.05 Hz if surviving several years

LOVBB (TRLS5) might capture Mantle Normal modes down to 5 mHz if long term monitoring

LGWA inertial sensors (Ajith et al., 2024) might detect below 5 mHz but with too modest SNR

Only strainmeters (LILA, LBI-GND) provide high SNR modes observations down to ,S, and even ,S,

9/23/2025
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What we know after the Apollo seismic experiment ?

What we do not know after the Apollo seismic
experiment ?

—Focus on the lunar seismic noise
Selected Near future missions compared to Apollo

What will NOT be made by near future mission and
associated goals

Noise challenge for very long period seismology
Noise challenge for Gravitational waves
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Example

Moon activity at Apollo 12 station
LPZ component, peaked mode

LA
815 events

® A1:29/10/1975
6.8x1073 Nm (Kawamura et al. 2017)
7.4x10'3 Nm (Goins et al. 1981)
Largest A1 ~ 10" Nm ’
Smallest A1 Apollo A1 ~5 10'? Nm
Daily if extrapolated & ~ 2 1072 Nm

AllDMQ

Number of events/year
)

* Further Assumptions: 100
A1 detected at South Pole ’
800 km depth

Shallow quakes

Strike/dip/rake mecanism e
450 /450 /450 Catalogue amplitude (mm)

P.Lognonné Key Non Polar destinations US Nat. Academies.
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Source Challenges:

— Several effects are
expected to reduce
the Normal modes
signals

— Focal mecanism

— Larger attenuation in
the deep interior

— Lateral variations and
associated splitting

— Other DMQ sources
are less active than
A1

Instrument challenge:

— Tilt sensitivity for
accelerometers

9/23/2025

Longitudinal displacement, A1, 10'* Nm, 800 km

South pole, 24h
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The measurement of the normal modes
excited by the weakest Apollo DMQ
nest will provide several tens of splitting
functions, enabling to determine the

« fine structure » of the 3D deep lunar
interior

This will request the detection of normal
modes from all Apollo DMQs
nests...and DMQs down to 5 1072 Nm

Only strainmeters with better than 2 10-
19 Hz12 sensitivity can achieve this
goal

Need a crater to minimize near surface

dust effects and with the requested

diameter for strainmeter arms
9/23/2025
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What we know after the Apollo seismic experiment ?

What we do not know after the Apollo seismic
experiment ?

—Focus on the lunar seismic noise
Selected Near future missions compared to Apollo

What will NOT be made by near future mission and
associated goals

Noise challenge for very long period seismology
Noise challenge for Gravitational waves
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How low can we predict and possibly reduce the lunar seismic and
environmental noise to level compatible with GW detection?

9/23/2025

Micro-seismic noise from meteorite hum (Lognonné et al. 2009)
Micro-seismic noise from repeating DMQs

Micro -seismic noise from Thermal Moonquakes and
anthropogenic lunar activities

Ground noise from Solar constant time fluctuation
Gravitation noise from Earth

Radiation, dust, magnetic field, etc affecting directly the
strainmeters or accelerometers

P.Lognonné Key Non Polar destinations US Nat. Academies.
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How low can we predict and possibly reduce the lunar seismi

environmental noise to level compatible with GW detection ?
* Micro-seismic noise from meteorite hum (Lognonne et al. 2009)

* Micro-seismic noise from repeating DMQs

9/23/2025
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& Daily DMQ ~ 2 10> Nm

as the same seismic moment
of a very rare impact (~1/yr,
108 Ns impulse, 50 m class
diameter, upper limit)
corresponding to mass of
about 2.5 tons (assuming
ejecta amplification~2)

The daily largest impact has a
mass of about 4 kg and a
moment of about 10" Nm

All statistics with Brown et al.

2002 with upper limit
9/23/2025
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Seismic Impact Hu

\ [vanov s Brown , Ortiz
10 T T 10 T T 10 T T
10' 4 10t 4 10"k .
10" 1 10"k {1 10' ¢ 3

Amplitude Apollo DU

0 100 200 0 100 200
Time hour Time hour Time hour

Figure 14. Simulated impact amplitudes. Each point provides the maximum envelope amplitude of a
single simulated impact “recorded” at the station 12 location. From left to right are the simulations for the
Ivanov, Brown, and Ortiz models, respectively. Each simulation spans 10 days.

Apaollo 12 simulated peaked mode(DU) Absolute amplitude

10° F 3
10
a -
s
ol 10
4 -
o
>
[m]
S 2 o 10 ]
3 =}
“% o . 1 ol } E:-
8 ’ ' ' ! 3
E E
| gt =
% £
=10
4] 50 100 150 200 ] 50 100 150 200
Time hour Time hour

Figure 15. Composite waveform for impacts simulated using the Brown model. The duration of each
waveform (corresponding to an individual impact) summed is 1 h, while the plot shows 10 days of signal.
(left) The computed seismogram in Apollo DU. (right) The absolute value of the seismogram, on a
logarithmic scale.

« A reasonable estimation of the Hum at 0.5 sec can be estimated to about 10-2 Apollo DU,
which provides about 5 x 10-'3 m rms , wich means 5 10-2 m/s? rms

( see details in Lognonné et al. 2009)

9/23/2025
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100 sec) (Only impact noise and furthermore the seismic (MY One impact. Hum to be estimated, but
noise is also amplified by modes )

we are comparable to Lognonne et al. 2009 )
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Seismic Impact Hu

10" Nm

» The seismic impact hum rises as f?
- This model is likely overestimating — — i s swain . Characteristi Stain
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affect Normal modes below 0.01 Hz
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DMQ Hum versus |
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« This DMS Hum might be a noise source compared k
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matching by 100 (conservative) to 500 when both the | H\ N
strain (for the template) and the seismic signal ( for | Ll IM WHM
the time) are recorded jointly by a strain-meter and a A T r il N
seismometer. Frequency Hz
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Casel

Case2

Case3
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P-wave
S-wave

t= ZIYS s

t= 21.5s

L LR

.“

t= 21.5s

™

~ Rayleigh
wave

t= 43.0s

t= 43.0s

In contrary to the Earth, the seismic waves on the Moon are known to be in
a strong diffusive regime .

Question: Can we use close stations for removing any coherent seismic

noise on the Moon ?

(E, N)=
(99 km, 1 km)

\iasdad sl
\iasd sl sl
Ll i b ]
\iasd sl sl
s b sl
B e i

(99 km, -1 km)

(101 km, 1 km)

Array with
100 m interval

(101 km, -1 km)

Onodera et al. 2023
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Noise cancellation

 The coherency is lost very
rapidly in about 100m

* Numerical tests suggest a very
low efficient, of about 20 db
when we are in the coda of the
seismic waves

* This suggests that a damping +
decorrelation with co-located
sensor might be more efficient,
as soon as the damping is
better than 20-40 db.
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My « best » esti

« Lunar seismic noise at long period is made by a
Hum from DMQ and a Hum from impacts

. Larger DMQs
might only be partially removed, leading to period
with larger noise.

* In the 0.1-10 mHz, this noise is comparable to a
1 fm/Hz'V2 - 5 km strainmeter requirement

» All these estimations might be reduced significantly
due to the intense scattering on the Moon “ |
Il

» This noise is compatible with the detection of | )
Normal modes excited by DMQs, to a level 1020 Mw' | |
compatible with splitting tomography of the deep l l |
lunar interior j “ H|||

1l

-

o
&
=]

Characteristic strain
sl
®

* In the deci-Herz, only damping + decorrelation

10-22 L

‘ M'M ' T

seems good enough for decreasing the seismic Tt 1"0-; 02 o
noise. Frequency Hz
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How can this science be accomplished on the Moon? Are there partlcular advantages to a non polar lunar S|te’?

— By measuring the Normal modes splitting excited by ALL Apollo detected DMQs nest with known locations

— Yes, as we can select a crater matching the length of the strainmeter arms and deploy a new seismic stations away
from the South Pole seismic network and explore new terranes.

What measurements are needed to accomplish the objective?

— 2 Ground coupled strain measurements (E-W, N-S) made by a two arms strainmeter with sensitivity better than 1
fm/Hz'2 for 5 km baseline. None of the proposed lunar accelerometers meet the requirement.

— Must be completed by ILN class Very broad band seismometers ( 0.01-50 Hz, 10-1" m/s2/Hz"2 thermal noise)
Does this science require a specific site, multiple sites, or can it be done anywhere on the lunar surface?
- To first order, this is site agnostic pending crater identification, but this shall be more than 10s km from future basis

What will the site, or site type, need to ensure that the science objective can be accomplished (e.g. radio quiet, geological
properties, other)?

— Young terrane to reduce the thickness of the ultra low velocity regolith layer (HF wave guide)
Is there a pathfinder to advance the scientific objective?
- Any long lived seismic stations locating DMQs and improving knowledge on seismic noise
How does a human onsite enable or improve the quality of the measurement(s)? (e.g., Judgement? Reaction? Adaptability?)

— Installation will be much easier with LTV and astronauts. Robotic installation will be very challenging with multiple
landers

Are new capabilities and/or pre-placed assets necessary to ensure the human can do the measurement or collect the sample? If
so, what?

— All technology seems available, even if no TRL6 instrument exists yet
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