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Key LGWA Mission Features

e Femtometer precise ground-vibration measurement
to observe the lunar response to gravitational waves
(GWs)

e Exploiting the extremely low seismic background on
the Moon

e Exploiting the extremely low temperature and high
temperature stability inside permanently shadowed
regions at the lunar poles

e Station array to mitigate the noise from the seismic
background in post-processing

e Longevity of stations (target: 10yr+) enables
extension to global sensor array

LGWA @ NAS



s i Laser Interferometer Lunar Antenna (LILA)

Key differences to LGWA:

- Long-baseline laser interferometry

- Peak sensitivity of LILA will not be in
the dHz band (complementarity with
LGWA); could however beat LGWA
sensitivity at lower and higher
frequencies

Can be realized with (high-f concept) and
without (low-f concept) suspended optics.

https://arxiv.org/abs/2508.11631
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sii Extremely Weak Seismic Background

The Moon might be the
seismically quietest planetary

— 1077 body in the solar system:
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The surface temperature
inside PSRs at the lunar poles
is very low (can be
continuously below 50K).
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E? High Temperature Stability and Uniformity

Even a small temperature fluctuations inside
PSRs might cause an important thermal
response of ground, lander, payload, leading to
excess noise in the LGWA measurement.
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Soundcheck*
(PSR geophysical explorer)

LGWA
(GW observatory)

Number of seismic stations

1 seismic station (two horizontal channels) deployed on
ground

4 seismic stations (each with two horizontal channels)
deployed on ground and forming a kilometer-scale array

Displacement sensitivity

<1pm/Hz"2 between 0.1-1Hz

<1pm/Hz"2 at 0.1Hz, <fm/Hz"2 at 1Hz

Deployment site

Inside any PSR (<100K)

Inside PSR with T<40K

Proof-mass material

Niobium

Niobium or silicon

Proof-mass temperature

Ambient PSR temperature (<100K)

Cooled to 4K with low-vibration cryocooler

Readout

Laser interferometric

Laser interferometric or through superconducting coils
and SQUIDs

Targeted mission lifetime

2 months

10 years

24/09/2025

*selected by ESA into the lunar reserve
pool; ASI funding starts in 2025
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Science Case

GW Astronomy and Lunar Science

LGWA Science White Paper

Decadal Survey on Planetary Science and Astrobiology

Decadal Survey on Biological and Physical Sciences Research in Space

ESA SciSpacE White Papers

24/09/2025 LGWA @ NAS


https://doi.org/10.1088/1475-7516/2025/01/108
https://www.nationalacademies.org/our-work/planetary-science-and-astrobiology-decadal-survey-2023-2032
https://www.nationalacademies.org/our-work/decadal-survey-on-life-and-physical-sciences-research-in-space-2023-2032
https://esamultimedia.esa.int/docs/HRE/03_PhysicalSciences_Planetary_Science.pdf
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EEI Multiband: One Source, Multiple Observation Bands
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G S Sky Localization
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Exploring Black-hole Populations

Binary black holes (BBHs) can be observed out to
high redshift complementing the mass ranges to
be observed with LISA and Einstein Telescope.

Horizon for nonspinning, equal-mass BBH
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number fraction

mass distribution of BH seeds at formation
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This will allow us to study the early
population of seed black holes of
today’s supermassive BHSs. "
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What are the progenitors of Supernovae Type la?

Double-white dwarfs can be observed out to a few 10Mpc.
Tens of mergers per year expected to be observed with LGWA.
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Stellar Disruptions and Explosions

Asymmetric mass ejection and
associated neutrino emission
in core-collapse SNe produce
GW memory effect detectable
by LGWA
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. Lunar Internal Structure and Formation History

The internal structure of the Moon
needs to be understood accurately
to model its response to GWs.
Accurate simulations of the lunar _ .
GW response are imperative Learning about the Moon'’s internal
(Digital Twin?). structure and geology means to
learn about its formation history.
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Studying the Spatial Distribution of Meteoroid Impacts

Meteoroid impacts observed with Weak impact ejecta flux at the poles
NASA's lunar monitoring program (simulation)
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High Precision Tomography of the Moon with GWs

Same binary black hole observed with LGWA and ground-based detectors
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: 0 .
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&? Magnetic Fluctuations at Lunar Surface

Charged crater walls, the
T Earth’ magnetotail, and proton
Solar wind charging polarcraterwallsv/,f' CyC|Otr0n mOtion are among
Moon the relevant electromagnetic
Proton cyclotron effects at the LGWA site.

motion: ~0.1Hz

These effects need to be
studied due to the
accelerometers’ susceptibility
to electromagnetic fields and
charges.

24/09/2025 LGWA @ NAS



E? Synergies and Missions of Interest

Type of Synergy

Multi-messenger
observations and science

Multiband observations and
science

Studies of the lunar interior
and seismicity

Studies of the lunar surface
environment

24/09/2025

Targets

Tidal disruption, supernovae,
jets, black-hole binaries

Compact binaries with black
holes and neutron stars

Moonquakes

Meteoroid impacts, magnetic
fields, temperature, lunar
regolith

LGWA @ NAS

Instruments together with LGWA

EM observatories: X-ray, optical,
radio (like ELT, Athena, VRO, SKA)

Terrestrial and space-based GW
detectors (like LISA, Einstein
Telescope, Cosmic Explorer)

Lunar geophysical stations (like
Lunar Geophysical Network,
Farside Seismic Suite, Chang’e 7
seismograph)

LUMIO, LUNA Analog Facility

20



LGWA Payload Concept
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G 'S The LGWA Payload Concept

J Appl Phys 131, 244501, 2023

90 K radiator 50 K radiator

sorption
coolers

Jvan Heijnngen, V Amsferdam
Ultra-high quality mechanical
structure

im heat exchanger

X compression/expansion
= cold tip

== thermal conductor

A thermal isolator

[ proof mass readout

Vibration free sorption cooling

platform
leveling
system

Quantum limited readout

Microradian precision leveling at
cryo-temperatures
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S Compact Interferometric Displacement Sensor

Vacuum chamber

dynamic cavity readout

Homodyne quadrature
(Soundcheck candidate)

____________

Heterodyne cavity tracking
(LGWA candidate)
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G)S Superconducting Actuator Coils GSIR—NPL, India

| University of Camerino, Italy
Max-Planck-Institute CPFS, Germany

Transition to the superconducting
state demonstrated in October 2024
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| GEMINI: Moon Emulator ~ CGEMINIsiteis1.4km
underground

40K cryo-box will
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= > LGWA White Papers

» White paper submitted to Ideas for exploring the Moon with a large European lander (ESA, 2020)

» Artemis Science White Papers (NASA, 2020)

» Topical Paper and Research Campaign: Decadal Survey on Biological and Physical Sciences
Research in Space (National Academies of Sciences, 2021)

* Presentation to the GW Space working group of ESA’s Voyage 2050 (2024)

» White paper to Key Non-Polar Destinations Across the Moon to Address Decadal-level
Science Objectives with Human Explorers (National Academies of Sciences, 2025)

Global Configurations of the Lunar Gravitational-wave Antenna

Jan Harms ©,%2* Stefano Benetti,® Emanuele Berti,? Xing Bian,” Alessandro Bonforte,® Marica Branchesi,b
Roberto Della Ceca,” Christophe Collette,®? Alessandra Corsi,’ Michael W. Coughlin,'“ Suresh Doravari,!!

Alessandro Frigeri,'? Kiranjyot Gill,'® Oliver Gerberding,'* Joris van Heijningen,'® 1% Francesco Iacovelli,® Augusto
Marcelli,!” Andrea Maselli,»? Marco Olivieri,'® '? Ferdinando Patat,'? Andrea Perali,?" %! Gianluca Di

Rico,?? Roberto Serafinelli,?® 21 Paola Severgnini,” Angela Stallone,'® Morgane Zeoli,® 25 and Aayushi Doshi
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Cosmology:
Measurement of a primordial
GW background
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Voted most exciting
LGWA science at last
week’s annual meeting!
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Global Network: Augmenting the LGWA Science Case

Fundamental physics:
Measurement of GW polarizations

GR tensor modes
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PHYSICAL REVIEW D 90, 042005 (2014)

Constraining the gravitational wave energy density of the
Universe using Earth’s ring

Michael (‘,oughlinl and Jan Harms®
‘De/:ur‘lmml of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
“INFN, Sezione di Firenze, Sesto Fiorentino 50019, Italy
(Received 5 June 2014; published 25 August 2014)

PHYSICAL REVIEW D 73, 042001 (2006)

Big Bang Observer and the neutron-star-binary subtraction problem

Curt Cutler

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

Jan Harms

(Received 16 November 2005: published 8 February 2006)

Max-Planck-Institut fiir Gravitationsphysik and Universitit Hannover, Callinstrae 38, 30167 Hannover, Germany
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Non-polar Deployment Sites
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Key parameters for site selection:

Access; deployment by
astronauts could potentially
greatly reduce risks compared to
robotic deployments

High temperature stability

Low seismic background
Distribution at equator and north
pole (in addition to the south-
pole PSR array)

Any prior high-precision seismic
experiment inside the PSR
(Soundcheck) and at non-polar
sites will be of high value to
LGWA

28



Conceivable Timeline

Soundcheck LGWA
. deployment deployment
ASI funding ® %
L >
LGWA technologies at
TRL6
®
Chang'e 7
&
Farside Seismic Suite LISA mission Extended lifetime
% I
e
Einstein Telescope / Cosmic Explorer
LGWA payload LGWA data
LGWA early technology development _ _
_ Global LGWA network extensions

Soundcheck payload Soundcheck data _
. .
L » Time

2025 2027 2029 2031 2033 2035 2037 2039 2041 2043 2045
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