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Science with optical clocks on the moon:

e Precision navigation and timing

e \ery long baseline interferometry

e [ests of the gravitational redshift and relativity, geodesy of the moon(”?)

e Doppler tracking of the moon, gravitational wave detection(?)

e Dark matter searches
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Outline

* [ntroduction to optical atomic clocks

* Optical clocks in space for fundamental physics

* Recent progress and advancements

e [esting relativity in the lab




Principles of an atomic clock
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Principles of an atomic clock

‘ cesium-133

v=9,192,631,770 Hz
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Image credit: Wikipedia



Clock performance

Microwave transitions

cesium-133
\:}
Spm-m:QN Fractional frequer?cy @nstab@\ity
’ from quantum projection noise:
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I ~0.7 nanoseconds
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Clock progress, 1656 - 2016
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Clock progress, 1656 - 2016
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Traditional atomic clock applications

Sensing/
ommunications:

Synthetic aperture radar

Navigation: Unit definitions:
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http://wikipedia.org

How can we make an even better atomic clock?

Microwave transitions

Fractional frequency instability
from quantum projection noise:

—
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v, OSNR B 271'1/0T\ Nt
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I ~0.7 nanoseconds
v=9.192.631,770 Hz




How can we make an even better atomic clock?

Microwave transitions

Fractional frequency instability
from quantum projection noise:

—

0 1 1 I'+1,

N 2\ Nt

7y SNR

L TRRTTETTR YT ETER YT ETERTYRTTRSYPIIRIY P

I ~0.7 nanoseconds
v=9.192.631,770 Hz




How can we make an even better atomic clock?

Microwave transitions

Fractional frequency instability
from quantum projection noise:

—

0 1 1 I'+1,

N 2\ N 1

7y SNR

t = Move from v, = 1010 Hz to v, = 1015 Hz

L TRRTTETTR YT ETER YT ETERTYRTTRSYPIIRIY P

I ~0.7 nanoseconds
v=9.192.631,770 Hz




Can we measure the gravitational redshift with clocks in the lalb?

Microwave transitions | Optical transitions
cesium-133

strontium
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I ~0.7 nanoseconds [ ~ 2.3 femtoseconds
v=9,192,631,770 Hz v =429,228.004,229,873.4 Hz
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http://nist.gov

Alkall microwave atomic clocks

Group—1
I Period

1

N

W

2

*x %

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2
He
5 6 7 8 9 10
B C N O F || Ne
13 || 14 || 15 || 16 || 17 || 18
Al || Si P S Cl || Ar
21 || 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 30 || 31 || 32 || 33 || 34 || 35 | 36
Sc || Ti V || Cr{{Mn| Fe || Co || Ni ||Cul||Zn || Ga || Ge || As || Se || Br || Kr
301140 1|| 41 || 42 || 43 || 44 || 45 || 46 || 47 || 48 || 49 || 50 || 51 || 52 || 53 || 54
Y || Zr |[Nb||Mo || Tc || Ru || Rh||Pd | Ag || Cd| In || Sn || Sb || Te I Xe
71|72 || 73 || 74 || 75 || 76 || 77 || 78 || 79 || 80 || 81 || 82 || 83 || 84 || 85 || 86
Lu || Hf || Ta || W || Re || Os || Ir || Pt || Au || Hg | Tl || Pb | Bi || Po || At || Rn
103|{104|/ 105|106 107 108(/109((110/111 (/112 113|{114|/115|/116|/117| 118
Lr || Rf [ Db || Sg || Bh |  Hs | Mt || Ds | Rg || Cn || Nh | FlI || Mc || Lv || Ts || Og
57 || 58 || 59 || 60 || 61 || 62 | 63 || 64 || 65| 66| 67 | 68 || 69 || 70
la || Ce || Pr || Nd [|[Pm|Sm | Eu||Gd | Tb || Dy || Ho || Er || Tm | Yb
89 ||90 || 91 || 92 (|93 (|94 || 95 || 96 || 97 || 98 || 99 || 100|101 102
Ac || Thi||Pal|l U | Npj Pu||Am|Cm| Bk || Cf || Es || Fm || Md || No




Optical atomic clocks

Group—1
I Period

2

*x %

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2
He
5 6 7 8 9 10
B C N O F || Ne
13 4 14 || 15 || 16 || 17 || 18
Al [} Si P S Cl || Ar
21 || 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 30 || 31 || 32 || 33 || 34 || 35 || 36
Sc || Ti V || Cr{{Mn| Fe || Co || Ni ||Cul||Zn || Ga || Ge || As || Se || Br || Kr
301140 1|| 41 || 42 || 43 || 44 || 45 || 46 || 47 || 48 || 49 || 50 || 51 || 52 || 53 || 54
Y || Zr |[Nb||Mo || Tc || Ru || Rh||Pd | Ag || Cd| In || Sn || Sb || Te I Xe
71| 72 || 73 || 74 || 75 || 76 || 77 || 78 || 79 || 80 | 81 || 82 || 83 || 84 || 85 || 86
Lu || Hf || Ta || W || Re || Os | Ir || Pt | Au § Hg § Tl || Pb || Bi || Po || At || Rn
103|{104|/ 105|106 107 108(/109((110{111 (/112 113|{114|/115|/116|/117| 118
Lr || Rf [ Db || Sg || Bh |  Hs | Mt || Ds | Rg || Cn || Nh | FlI || Mc || Lv || Ts || Og
57 || 58 || 59| 60| 61 | 62| 63 || 64 || 65 | 66 || 67
la || Ce || Pr || Nd [|[Pm|Sm | Eu || Gd || Tb || Dy || Ho
89 ||90 || 91 || 92 | 93 (|94 || 95 || 96 || 97 || 98 || 99
Ac || Thil Pal| U | Npji Pul||Am|Cm]| Bk || Cf || Es

] - Optical lattice clock atoms

[7]- Trapped ion clock atoms

See Ludlow et al., Reviews of Modern Physics (2015) for other species of optical clocks




87Strontium

['=2n x 32 MHz .

689 nm
['=2nx 7.5 kHz

Clock transition

698 nm
1 mHz linewidth

Q~1018
160 s lifetime
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See Ludlow et al., Reviews of Modern Physics (2015) for other species of optical clocks



L aser cooling
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L aser cooling
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582 : So




Optical lattice trap

The solution”




Why do you need an optical lattice”

Doppler broadening
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SK et al., Nature (2016)



A "magic wavelength” optical lattice
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Optical lattice clock
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40 cm ultrastable ULE cavity
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Martin et al., Science, (2013)



40 cm ultrastable ULE cavity

Linewidth: 26 mHz
Q~2x1016
AL ~ 101 m (1/10th roroton)

384,400 km
G rrnrnnnnnnnns >

> |[<¢

AL=0.05 fm

Martin et al., Science, (2013)



Optical lattice clock
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UC Berkeley strontium optical lattice clock




Clock progress, 1656 - 2018
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Atomic clock progress, 1949 - 2019
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Figures of merit for clock performance:
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Shifts and Uncertainties in Fractional Frequency Units x 10-18

Systematic Effect Shift Uncertainty  Shift
BBR Static _— -4562.1
BBR Dynamic -346 3.7 -305.3
Density Shift _— 3.5
Lattice Stark -461.5 3.7 -1.3
Probe AC Stark _— 0.0

1st Order Zeeman -0.2 1.1 -0.2

2nd Order Zeeman _— -51.7
Line pulling and tunneling 0.0 <0.1 0.0
Background gas collisions 0.0 0.6 0.0

AOM Phase Chirp

2nd-Order Doppler

Servo Error

Total

Bloom et al., Nature (2014), Nicholson et al., Nature Communications, (2015)

Uncertainty
0.3
1.4
0.4
1.1
0.0
0.2
0.3
<0.1
0.1
<0.6
0.4
<0.1



Atomic clock progress, 1949 - 2019
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Novel applications of optical clocks

1/p du/dt (107%/yr)

Searches for new physics Geodesy

Dy AI'/Hg” Hg™ Yb" E3
UCB NIST  NIST PTB

Yb" E2
PTB

Sr
World

-2 -1 0 1 2 3
1/ dou/dt (107°/yr)

GW detection

Huntemann et al. PRL (2014); Takano et al. Nature Photonics (2016); Dereviako, Pospelov, Nature Physics (2014)
SK et al. PRD (2016); SK et al., Nature (2017); Arms, Serna, arXiv (2016)

Dark matter detection
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Ophca\ clocks In space for fundamenta\ physms

Searches for new physics

Dy AI'/Hg” Hg™ Yb" E3
UCB NIST  NIST PTB

Yb* E2s
PTB

Sr o
World =

&)

o

-2 -1 0 1 2 3

Huntemann et al. PRL (2014); Takano et al. Nature Photonics (2016); Dereviako, Pospelov, Nature Physics (2014)
SK et al. PRD (2016); SK et al., Nature (2017); Arms, Serna, arXiv (2016)




Challenges

e Need low-SWaP and rad-hard lasers, opto-electronics, and cold-atom packages.

e Need to improve the robustness and autonomy of optical lattice clocks.

e Need ultra-stable clock lasers and frequency combs in low SWaP packages.




State of the art space-based clocks

ACES: PHARAO (ultra-cold cesium clock) + SHM (space hydrogen maser)

"

J

.
' d
g |

TP

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/ACES_Atomic_Clock_Ensemble_in_Space



State

T. Ely, et al.

of the art space-based clocks

Deep Space Atomic Clock (Hg+ microwave clock)
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"Deep space atomic clock technology demonstration mission results." 2022 IEEE Aerospace Conference



State of the art space-based clocks

Captive screw Mounting rail Aluminum silicon Mechanical shutter Liquid-cooled plate
carbide baseplate controller_
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J. Xia, et al. "Optical system for a strontium optical lattice clock aboard the Chinese Space Station." Review of Scientific Instruments (2025).



State of the art portable optical clocks
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T. Bothwell, et al. "Deployment of a transportable Yb optical lattice clock." Optics Letters 50.2 (2025)



Optical clocks in space for fundamental physics

Searches for new physics

Dy AI'/Hg” Hg™ Yb" E3
UCB NIST  NIST PTB

Yb" E2
PTB

Sr
World

1/ du/dt (107%yr)

-2 -1 0 1 2 3
1/ dou/dt (107°/yr)

GW detection

Huntemann et al. PRL (2014); Takano et al. Nature Photonics (2016); Dereviako, Pospelov, Nature Physics (2014)
SK et al. PRD (2016); SK et al., Nature (2017); Arms, Serna, arXiv (2016)

Geodesy

Dark matter detection
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30°

Gravitational wave detection - GW170817

A4588 LIGO - Virgo
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GGravitational wave detection - LIGO
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LIGO collaboration, https://dcc.ligo.org/P1600088/public/ (2016)



GGravitational wave detection
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Plot from http://rhcole.com/apps/GWoplotter/



| ISA and elLISA

LISA and el ISA:
* Drag-free, space based
version of LIGO

e d=>5x10°m arm length

See e.g. Amaro-Seoane et al., (LISA collaboration), Classical and Quantum Gravity (2012)



GGravitational wave detection
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Gravitational wave detection
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Doppler tracking searches

Previous limits on GW density:
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1Aoyama et al., PRD (2014)



Doppler tracking searches

Previous limits on GW density:
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1Aoyama et al., PRD (2014), 2image credit: NASA/JPL



Doppler tracking searches

Previous limits on GW density: Detector transter function:
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1Aoyama et al., PRD (2014), 2SK et al., PRD (2016)



GGravitational wave detection with clocks
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GGravitational wave detection with clocks

Clock based detector
d = 5x1010m arm length
N = 7x106 Sr atoms per clock
160 s coherence time

Dynamical decoupling
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SK et al., PRD (2016), see also Graham et al., PRD (2016)



GGravitational wave detection with clocks
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SK et al., PRD (2016), see also Graham et al., PRD (2016)



Optical clocks in space for fundamental physics

1/ du/dt (107%yr)

Searches for new physics

Dy AI'/Hg” Hg™ Yb" E3
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World

-2 -1 0 1 2 3
1/ dou/dt (107°/yr)

GW detection

Geodesy

Dark matter detection

Huntemann et al. PRL (2014); Takano et al. Nature Photonics (2016); Dereviako, Pospelov, Nature Physics (2014)

SK et al. PRD (2016); SK et al., Nature (2017); Arms, Serna, arXiv (2016)




Dark matter searches with atomic clocks

ong distance clock comparisons: Multi-species comparisons:
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Dereviako, Pospelov, Nature Physics (2014), 2Arvanitaki et al., PRD (2015), SWcisto et al., Science Advances (2018)



Dark matter searches with atomic clocks
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Dereviako, Pospelov, Nature Physics (2014), 2Arvanitaki et al., PRD (2015), SWcisto et al., Science Advances (2018)



Scalar dark matter searches with atomic GW detectors
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Hogan et al., PRA (2018), Arvanitaki et al., PRD (2018)



GGravitational wave detection with clocks

Clock based detector
d = 5x1010m arm length
N = 7x106 Sr atoms per clock
160 s coherence time

Dynamical decoupling
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SK et al., PRD (2016), see also Graham et al., PRD (2016)



GGravitational wave detection with clocks

Clock based detector
d = 5x1010m arm length
N = 7x106 Sr atoms per clock
160 s coherence time

Dynamical decoupling

: _16
. R o FTL'ﬁ fﬁ E L |||| ’ \ nun Mw}* mu 1\, lh" T IM
ftlllt h iy Wv " i
b mmw !
| H I M UW WW \l
S C\oéks w/ DD
LISA
107 )2 0001 0070 0100 1 10
10 . . .
Frequency (Hz)

10elker et al. Nature Photonics (2019)



A strontium optical lattice clock for tests of relativity




A strontium optical lattice clock for fundamental physics

875r in a “magic wavelength”
optical lattice:
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Racked mounted 12 cm ULE cavity:
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L imitations from local oscillator noise
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L imitations from local oscillator noise
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L imitations from local oscillator noise
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L imitations from local oscillator noise
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Novel applications of optical lattice clocks
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Inspiration from other experiments
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2hk

LIGO:;

b
Test ( )
th ‘o Mass 10-21
) ) r‘r
A} ¢ " hk Q
Y [ - |
. OhK o N2 2
g (-40hk) e g
s o? ‘l e ~ S 10—22
T Te - -’ e ~\ N <
Crrs- - i A Il £
........ ) ',’ “ \I>‘ E
Ao e ) . | 5
' . . '
L} A}
] L] E
' H L Ll
N1hk ' ' est 20 100 1000
E (102hk) “‘ 0 . . . o,-' Frequency (Hz)
! y Power
§ - Beam L. =4kKkm
. B — N
O A \ ;. Recycling ;phtter X
o . ’
N s H
~— 100 kW Circulating Power
- Test Test
Signal Mass Mass
Recycling
"W Photodetector

Asenbaum et al., PRL (2017), Abbott et al., (LIGO collaboration), PRL (2016)

Hanford, Washington (H1)

Livingston, Louisiana (L1)

I I I I

I - H1 observed
1

I I I I

H = L1 observed -
H1 observed (shifted, inverted)
I |

I [ [ I

H — Numerical relativity -
Reconstructed (wavelet)

i Reconstructed (template)
1 1

[ T T I

L — Numerical relativity -
Reconstructed (wavelet)

I Reconstructed (template)
I |

| |
0.30 0.35 0.40 0.45
Time (s)

| |
0.30 0.35 0.40 0.45
Time (s)



A multiplexed strontium optical lattice clock
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X. Zheng, SK et al., Nature, 602, 425—430 (2022)



erential clock comparisons around the world

Ye group, JILA Hobson group, Imperial:
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And others!




A multiplexed strontium optical lattice clock
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Atom-atom coherence times
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High performance differential comparisons
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High performance differential comparisons
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Atom-atom coherence times
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High performance differential comparisons
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High performance differential comparisons

Standard clock: . Synchronous differential comparison:
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Standard clock:
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Gravitational wave detection with clocks in space

SK, Pikovski, et al., PRD (2016), also Graham et al., PRL (2013)
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Record differential stabilities
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Differential frequency measurement

Coherence time ~ 2 mins 2.1x10-18 @ 1 s (factor-2 improvement)

K. Kim, ..., J. Ye, et al. Phys. Rev. Lett. 135 103601 (2025), published two weeks ago!



GGravitational wave detection with clocks

Clock based detector
d = 5x1010m arm length
N = 7x106 Sr atoms per clock
160 s coherence time

Dynamical decoupling
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10elker et al. Nature Photonics (2019)



GGravitational wave detection with clocks

Clock based detector
d = 5x1010m arm length
N = 7x106 Sr atoms per clock
160 s coherence time

Dynamical decoupling
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Challenges for optical clocks in space

e Need low-SWaP and rad-hard lasers, opto-electronics, and cold-atom packages.

e Need to improve the robustness and autonomy of optical lattice clocks.

e Need ultra-stable clock lasers and frequency combs in low SWaP packages.




Challenges for optical clocks in space

e Need low-SWaP and rad-hard lasers, opto-electronics, and cold-atom packages.

e Need to improve the robustness and autonomy of optical lattice clocks.

SaHeRey—COMIISTITITIOW ovVvValr packages.

f)

¢ ee uitra-staple ClOCKIaSerS=aa&

()




|_.oading more than two regions

X. Zheng, SK et al., Nature, 602, 425-430 (2022)



Multiplexing - a miniature clock network

Optical
lattice

X. Zheng, J. Dolde, H.-M. Lim, and SK, arXiv:2207.07145 (2022)



Multiplexing - a miniature clock network
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X. Zheng, J. Dolde, H.-M. Lim, and SK, arXiv:2207.07145 (2022)



Optical clocks in space for fundamental physics

Dark matter detection

Searches for new physics
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Yb" E2
PTB

Sr
World
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GW detection Quantum simulation

Huntemann et al. PRL (2014); Takano et al. Nature Photonics (2016); Dereviako, Pospelov, Nature Physics (2014)
SK et al. PRD (2016); SK et al., Nature (2017); Arms, Serna, arXiv (2016)




Gravitational redshift
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Image credits: wikipedia, space.com
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GGravitational redshift and clocks
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Relativistic geodesy
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Test of the gravitational redshift in the lalb

(x10~1%/cm)

YUDFILRQDO IUHTXHQF\ JUDGLHQI

OHDVXUHPHQI UXO

X. Zheng, J. Dolde, M.C. Cambria, H.-M. Lim, and SK, Nature Communications 14, 4886 (2023)



Gravitational redshift height resolution

)UDFILRQDO IVHTXHQF\ (x 10~ 1°)
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X. Zheng, J. Dolde, M.C. Cambria, H.-M. Lim, and SK, Nature Communications 14, 4886 (2023)




Gravitational redshift height resolution

YUDFILRQDO IUHTXHQF\ (x 10~19)
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X. Zheng, J. Dolde, M.C. Cambria, H.-M. Lim, and SK, Nature Communications 14, 4886 (2023)



Redshift across a single atomic ensemble
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Test of the gravitational redshift in the lalb

Sources Gradient Uncertainty
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X. Zheng, J. Dolde, H.-M. Lim, and SK, arXiv:2207.07145 (2022)



Tests of the gravitational redshitt
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Science with optical clocks on the moon:

e Precision navigation and timing

e \ery long baseline interferometry

e [ests of the gravitational redshift and relativity, geodesy of the moon(”?)

e Doppler tracking of the moon, gravitational wave detection(?)

e Dark matter searches
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Thank you for your attention!
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